| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasless.u |
|- ( ph -> U = ( F "s R ) ) |
| 2 |
|
imasless.v |
|- ( ph -> V = ( Base ` R ) ) |
| 3 |
|
imasless.f |
|- ( ph -> F : V -onto-> B ) |
| 4 |
|
imasless.r |
|- ( ph -> R e. Z ) |
| 5 |
|
imasless.l |
|- .<_ = ( le ` U ) |
| 6 |
|
imasleval.n |
|- N = ( le ` R ) |
| 7 |
|
imasleval.e |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( c e. V /\ d e. V ) ) -> ( ( ( F ` a ) = ( F ` c ) /\ ( F ` b ) = ( F ` d ) ) -> ( a N b <-> c N d ) ) ) |
| 8 |
|
fveq2 |
|- ( c = X -> ( F ` c ) = ( F ` X ) ) |
| 9 |
8
|
breq1d |
|- ( c = X -> ( ( F ` c ) .<_ ( F ` d ) <-> ( F ` X ) .<_ ( F ` d ) ) ) |
| 10 |
|
breq1 |
|- ( c = X -> ( c N d <-> X N d ) ) |
| 11 |
9 10
|
bibi12d |
|- ( c = X -> ( ( ( F ` c ) .<_ ( F ` d ) <-> c N d ) <-> ( ( F ` X ) .<_ ( F ` d ) <-> X N d ) ) ) |
| 12 |
11
|
imbi2d |
|- ( c = X -> ( ( ph -> ( ( F ` c ) .<_ ( F ` d ) <-> c N d ) ) <-> ( ph -> ( ( F ` X ) .<_ ( F ` d ) <-> X N d ) ) ) ) |
| 13 |
|
fveq2 |
|- ( d = Y -> ( F ` d ) = ( F ` Y ) ) |
| 14 |
13
|
breq2d |
|- ( d = Y -> ( ( F ` X ) .<_ ( F ` d ) <-> ( F ` X ) .<_ ( F ` Y ) ) ) |
| 15 |
|
breq2 |
|- ( d = Y -> ( X N d <-> X N Y ) ) |
| 16 |
14 15
|
bibi12d |
|- ( d = Y -> ( ( ( F ` X ) .<_ ( F ` d ) <-> X N d ) <-> ( ( F ` X ) .<_ ( F ` Y ) <-> X N Y ) ) ) |
| 17 |
16
|
imbi2d |
|- ( d = Y -> ( ( ph -> ( ( F ` X ) .<_ ( F ` d ) <-> X N d ) ) <-> ( ph -> ( ( F ` X ) .<_ ( F ` Y ) <-> X N Y ) ) ) ) |
| 18 |
|
fofn |
|- ( F : V -onto-> B -> F Fn V ) |
| 19 |
3 18
|
syl |
|- ( ph -> F Fn V ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> F Fn V ) |
| 21 |
20
|
fndmd |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> dom F = V ) |
| 22 |
21
|
rexeqdv |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( E. a e. dom F ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> E. a e. V ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
| 23 |
|
fnbrfvb |
|- ( ( F Fn V /\ a e. V ) -> ( ( F ` a ) = ( F ` c ) <-> a F ( F ` c ) ) ) |
| 24 |
20 23
|
sylan |
|- ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) -> ( ( F ` a ) = ( F ` c ) <-> a F ( F ` c ) ) ) |
| 25 |
24
|
anbi1d |
|- ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) -> ( ( ( F ` a ) = ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
| 26 |
|
ancom |
|- ( ( a N b /\ b F ( F ` d ) ) <-> ( b F ( F ` d ) /\ a N b ) ) |
| 27 |
|
vex |
|- b e. _V |
| 28 |
|
fvex |
|- ( F ` d ) e. _V |
| 29 |
27 28
|
breldm |
|- ( b F ( F ` d ) -> b e. dom F ) |
| 30 |
29
|
adantr |
|- ( ( b F ( F ` d ) /\ a N b ) -> b e. dom F ) |
| 31 |
30
|
pm4.71ri |
|- ( ( b F ( F ` d ) /\ a N b ) <-> ( b e. dom F /\ ( b F ( F ` d ) /\ a N b ) ) ) |
| 32 |
26 31
|
bitri |
|- ( ( a N b /\ b F ( F ` d ) ) <-> ( b e. dom F /\ ( b F ( F ` d ) /\ a N b ) ) ) |
| 33 |
32
|
exbii |
|- ( E. b ( a N b /\ b F ( F ` d ) ) <-> E. b ( b e. dom F /\ ( b F ( F ` d ) /\ a N b ) ) ) |
| 34 |
|
vex |
|- a e. _V |
| 35 |
34 28
|
brco |
|- ( a ( F o. N ) ( F ` d ) <-> E. b ( a N b /\ b F ( F ` d ) ) ) |
| 36 |
|
df-rex |
|- ( E. b e. dom F ( b F ( F ` d ) /\ a N b ) <-> E. b ( b e. dom F /\ ( b F ( F ` d ) /\ a N b ) ) ) |
| 37 |
33 35 36
|
3bitr4i |
|- ( a ( F o. N ) ( F ` d ) <-> E. b e. dom F ( b F ( F ` d ) /\ a N b ) ) |
| 38 |
20
|
ad2antrr |
|- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> F Fn V ) |
| 39 |
|
fnbrfvb |
|- ( ( F Fn V /\ b e. V ) -> ( ( F ` b ) = ( F ` d ) <-> b F ( F ` d ) ) ) |
| 40 |
38 39
|
sylan |
|- ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) /\ b e. V ) -> ( ( F ` b ) = ( F ` d ) <-> b F ( F ` d ) ) ) |
| 41 |
40
|
anbi1d |
|- ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) /\ b e. V ) -> ( ( ( F ` b ) = ( F ` d ) /\ a N b ) <-> ( b F ( F ` d ) /\ a N b ) ) ) |
| 42 |
7
|
3expa |
|- ( ( ( ph /\ ( a e. V /\ b e. V ) ) /\ ( c e. V /\ d e. V ) ) -> ( ( ( F ` a ) = ( F ` c ) /\ ( F ` b ) = ( F ` d ) ) -> ( a N b <-> c N d ) ) ) |
| 43 |
42
|
an32s |
|- ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ ( a e. V /\ b e. V ) ) -> ( ( ( F ` a ) = ( F ` c ) /\ ( F ` b ) = ( F ` d ) ) -> ( a N b <-> c N d ) ) ) |
| 44 |
43
|
anassrs |
|- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ b e. V ) -> ( ( ( F ` a ) = ( F ` c ) /\ ( F ` b ) = ( F ` d ) ) -> ( a N b <-> c N d ) ) ) |
| 45 |
44
|
impl |
|- ( ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ b e. V ) /\ ( F ` a ) = ( F ` c ) ) /\ ( F ` b ) = ( F ` d ) ) -> ( a N b <-> c N d ) ) |
| 46 |
45
|
pm5.32da |
|- ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ b e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( ( ( F ` b ) = ( F ` d ) /\ a N b ) <-> ( ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 47 |
46
|
an32s |
|- ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) /\ b e. V ) -> ( ( ( F ` b ) = ( F ` d ) /\ a N b ) <-> ( ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 48 |
41 47
|
bitr3d |
|- ( ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) /\ b e. V ) -> ( ( b F ( F ` d ) /\ a N b ) <-> ( ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 49 |
48
|
rexbidva |
|- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( E. b e. V ( b F ( F ` d ) /\ a N b ) <-> E. b e. V ( ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 50 |
|
r19.41v |
|- ( E. b e. V ( ( F ` b ) = ( F ` d ) /\ c N d ) <-> ( E. b e. V ( F ` b ) = ( F ` d ) /\ c N d ) ) |
| 51 |
49 50
|
bitrdi |
|- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( E. b e. V ( b F ( F ` d ) /\ a N b ) <-> ( E. b e. V ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 52 |
21
|
rexeqdv |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( E. b e. dom F ( b F ( F ` d ) /\ a N b ) <-> E. b e. V ( b F ( F ` d ) /\ a N b ) ) ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( E. b e. dom F ( b F ( F ` d ) /\ a N b ) <-> E. b e. V ( b F ( F ` d ) /\ a N b ) ) ) |
| 54 |
|
simprr |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> d e. V ) |
| 55 |
|
eqid |
|- ( F ` d ) = ( F ` d ) |
| 56 |
|
fveqeq2 |
|- ( b = d -> ( ( F ` b ) = ( F ` d ) <-> ( F ` d ) = ( F ` d ) ) ) |
| 57 |
56
|
rspcev |
|- ( ( d e. V /\ ( F ` d ) = ( F ` d ) ) -> E. b e. V ( F ` b ) = ( F ` d ) ) |
| 58 |
54 55 57
|
sylancl |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> E. b e. V ( F ` b ) = ( F ` d ) ) |
| 59 |
58
|
biantrurd |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( c N d <-> ( E. b e. V ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 60 |
59
|
ad2antrr |
|- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( c N d <-> ( E. b e. V ( F ` b ) = ( F ` d ) /\ c N d ) ) ) |
| 61 |
51 53 60
|
3bitr4d |
|- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( E. b e. dom F ( b F ( F ` d ) /\ a N b ) <-> c N d ) ) |
| 62 |
37 61
|
bitrid |
|- ( ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) /\ ( F ` a ) = ( F ` c ) ) -> ( a ( F o. N ) ( F ` d ) <-> c N d ) ) |
| 63 |
62
|
pm5.32da |
|- ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) -> ( ( ( F ` a ) = ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> ( ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 64 |
25 63
|
bitr3d |
|- ( ( ( ph /\ ( c e. V /\ d e. V ) ) /\ a e. V ) -> ( ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> ( ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 65 |
64
|
rexbidva |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( E. a e. V ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> E. a e. V ( ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 66 |
22 65
|
bitrd |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( E. a e. dom F ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> E. a e. V ( ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 67 |
|
fvex |
|- ( F ` c ) e. _V |
| 68 |
67 34
|
brcnv |
|- ( ( F ` c ) `' F a <-> a F ( F ` c ) ) |
| 69 |
68
|
anbi1i |
|- ( ( ( F ` c ) `' F a /\ a ( F o. N ) ( F ` d ) ) <-> ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) |
| 70 |
34 67
|
breldm |
|- ( a F ( F ` c ) -> a e. dom F ) |
| 71 |
70
|
adantr |
|- ( ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) -> a e. dom F ) |
| 72 |
71
|
pm4.71ri |
|- ( ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> ( a e. dom F /\ ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
| 73 |
69 72
|
bitri |
|- ( ( ( F ` c ) `' F a /\ a ( F o. N ) ( F ` d ) ) <-> ( a e. dom F /\ ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
| 74 |
73
|
exbii |
|- ( E. a ( ( F ` c ) `' F a /\ a ( F o. N ) ( F ` d ) ) <-> E. a ( a e. dom F /\ ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
| 75 |
67 28
|
brco |
|- ( ( F ` c ) ( ( F o. N ) o. `' F ) ( F ` d ) <-> E. a ( ( F ` c ) `' F a /\ a ( F o. N ) ( F ` d ) ) ) |
| 76 |
|
df-rex |
|- ( E. a e. dom F ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> E. a ( a e. dom F /\ ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) ) ) |
| 77 |
74 75 76
|
3bitr4ri |
|- ( E. a e. dom F ( a F ( F ` c ) /\ a ( F o. N ) ( F ` d ) ) <-> ( F ` c ) ( ( F o. N ) o. `' F ) ( F ` d ) ) |
| 78 |
|
r19.41v |
|- ( E. a e. V ( ( F ` a ) = ( F ` c ) /\ c N d ) <-> ( E. a e. V ( F ` a ) = ( F ` c ) /\ c N d ) ) |
| 79 |
66 77 78
|
3bitr3g |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( ( F ` c ) ( ( F o. N ) o. `' F ) ( F ` d ) <-> ( E. a e. V ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 80 |
1 2 3 4 6 5
|
imasle |
|- ( ph -> .<_ = ( ( F o. N ) o. `' F ) ) |
| 81 |
80
|
adantr |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> .<_ = ( ( F o. N ) o. `' F ) ) |
| 82 |
81
|
breqd |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( ( F ` c ) .<_ ( F ` d ) <-> ( F ` c ) ( ( F o. N ) o. `' F ) ( F ` d ) ) ) |
| 83 |
|
simprl |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> c e. V ) |
| 84 |
|
eqid |
|- ( F ` c ) = ( F ` c ) |
| 85 |
|
fveqeq2 |
|- ( a = c -> ( ( F ` a ) = ( F ` c ) <-> ( F ` c ) = ( F ` c ) ) ) |
| 86 |
85
|
rspcev |
|- ( ( c e. V /\ ( F ` c ) = ( F ` c ) ) -> E. a e. V ( F ` a ) = ( F ` c ) ) |
| 87 |
83 84 86
|
sylancl |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> E. a e. V ( F ` a ) = ( F ` c ) ) |
| 88 |
87
|
biantrurd |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( c N d <-> ( E. a e. V ( F ` a ) = ( F ` c ) /\ c N d ) ) ) |
| 89 |
79 82 88
|
3bitr4d |
|- ( ( ph /\ ( c e. V /\ d e. V ) ) -> ( ( F ` c ) .<_ ( F ` d ) <-> c N d ) ) |
| 90 |
89
|
expcom |
|- ( ( c e. V /\ d e. V ) -> ( ph -> ( ( F ` c ) .<_ ( F ` d ) <-> c N d ) ) ) |
| 91 |
12 17 90
|
vtocl2ga |
|- ( ( X e. V /\ Y e. V ) -> ( ph -> ( ( F ` X ) .<_ ( F ` Y ) <-> X N Y ) ) ) |
| 92 |
91
|
com12 |
|- ( ph -> ( ( X e. V /\ Y e. V ) -> ( ( F ` X ) .<_ ( F ` Y ) <-> X N Y ) ) ) |
| 93 |
92
|
3impib |
|- ( ( ph /\ X e. V /\ Y e. V ) -> ( ( F ` X ) .<_ ( F ` Y ) <-> X N Y ) ) |