Step |
Hyp |
Ref |
Expression |
1 |
|
imasmhm.b |
|- B = ( Base ` W ) |
2 |
|
imasmhm.f |
|- ( ph -> F : B --> C ) |
3 |
|
imasmhm.1 |
|- .+ = ( +g ` W ) |
4 |
|
imasmhm.2 |
|- ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
5 |
|
imaslmhm.1 |
|- D = ( Scalar ` W ) |
6 |
|
imaslmhm.2 |
|- K = ( Base ` D ) |
7 |
|
imaslmhm.3 |
|- ( ( ph /\ ( k e. K /\ a e. B /\ b e. B ) ) -> ( ( F ` a ) = ( F ` b ) -> ( F ` ( k .X. a ) ) = ( F ` ( k .X. b ) ) ) ) |
8 |
|
imaslmhm.w |
|- ( ph -> W e. LMod ) |
9 |
|
imaslmhm.4 |
|- .X. = ( .s ` W ) |
10 |
|
eqidd |
|- ( ph -> ( F "s W ) = ( F "s W ) ) |
11 |
5
|
fveq2i |
|- ( Base ` D ) = ( Base ` ( Scalar ` W ) ) |
12 |
6 11
|
eqtri |
|- K = ( Base ` ( Scalar ` W ) ) |
13 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
14 |
|
fimadmfo |
|- ( F : B --> C -> F : B -onto-> ( F " B ) ) |
15 |
2 14
|
syl |
|- ( ph -> F : B -onto-> ( F " B ) ) |
16 |
10 1 12 3 9 13 15 4 7 8
|
imaslmod |
|- ( ph -> ( F "s W ) e. LMod ) |
17 |
|
eqid |
|- ( .s ` ( F "s W ) ) = ( .s ` ( F "s W ) ) |
18 |
|
eqid |
|- ( Scalar ` ( F "s W ) ) = ( Scalar ` ( F "s W ) ) |
19 |
1
|
a1i |
|- ( ph -> B = ( Base ` W ) ) |
20 |
10 19 15 8 5
|
imassca |
|- ( ph -> D = ( Scalar ` ( F "s W ) ) ) |
21 |
20
|
eqcomd |
|- ( ph -> ( Scalar ` ( F "s W ) ) = D ) |
22 |
8
|
lmodgrpd |
|- ( ph -> W e. Grp ) |
23 |
1 2 3 4 22
|
imasghm |
|- ( ph -> ( ( F "s W ) e. Grp /\ F e. ( W GrpHom ( F "s W ) ) ) ) |
24 |
23
|
simprd |
|- ( ph -> F e. ( W GrpHom ( F "s W ) ) ) |
25 |
10 19 15 8 5 6 9 17 7
|
imasvscaval |
|- ( ( ph /\ u e. K /\ x e. B ) -> ( u ( .s ` ( F "s W ) ) ( F ` x ) ) = ( F ` ( u .X. x ) ) ) |
26 |
25
|
3expb |
|- ( ( ph /\ ( u e. K /\ x e. B ) ) -> ( u ( .s ` ( F "s W ) ) ( F ` x ) ) = ( F ` ( u .X. x ) ) ) |
27 |
26
|
eqcomd |
|- ( ( ph /\ ( u e. K /\ x e. B ) ) -> ( F ` ( u .X. x ) ) = ( u ( .s ` ( F "s W ) ) ( F ` x ) ) ) |
28 |
1 9 17 5 18 6 8 16 21 24 27
|
islmhmd |
|- ( ph -> F e. ( W LMHom ( F "s W ) ) ) |
29 |
16 28
|
jca |
|- ( ph -> ( ( F "s W ) e. LMod /\ F e. ( W LMHom ( F "s W ) ) ) ) |