Step |
Hyp |
Ref |
Expression |
1 |
|
imasmhm.b |
|- B = ( Base ` W ) |
2 |
|
imasmhm.f |
|- ( ph -> F : B --> C ) |
3 |
|
imasmhm.1 |
|- .+ = ( +g ` W ) |
4 |
|
imasmhm.2 |
|- ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
5 |
|
imasmhm.w |
|- ( ph -> W e. Mnd ) |
6 |
|
eqidd |
|- ( ph -> ( F "s W ) = ( F "s W ) ) |
7 |
1
|
a1i |
|- ( ph -> B = ( Base ` W ) ) |
8 |
|
fimadmfo |
|- ( F : B --> C -> F : B -onto-> ( F " B ) ) |
9 |
2 8
|
syl |
|- ( ph -> F : B -onto-> ( F " B ) ) |
10 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
11 |
6 7 3 9 4 5 10
|
imasmnd |
|- ( ph -> ( ( F "s W ) e. Mnd /\ ( F ` ( 0g ` W ) ) = ( 0g ` ( F "s W ) ) ) ) |
12 |
11
|
simpld |
|- ( ph -> ( F "s W ) e. Mnd ) |
13 |
|
eqid |
|- ( Base ` ( F "s W ) ) = ( Base ` ( F "s W ) ) |
14 |
|
eqid |
|- ( +g ` ( F "s W ) ) = ( +g ` ( F "s W ) ) |
15 |
|
eqid |
|- ( 0g ` ( F "s W ) ) = ( 0g ` ( F "s W ) ) |
16 |
|
fof |
|- ( F : B -onto-> ( F " B ) -> F : B --> ( F " B ) ) |
17 |
9 16
|
syl |
|- ( ph -> F : B --> ( F " B ) ) |
18 |
6 7 9 5
|
imasbas |
|- ( ph -> ( F " B ) = ( Base ` ( F "s W ) ) ) |
19 |
18
|
feq3d |
|- ( ph -> ( F : B --> ( F " B ) <-> F : B --> ( Base ` ( F "s W ) ) ) ) |
20 |
17 19
|
mpbid |
|- ( ph -> F : B --> ( Base ` ( F "s W ) ) ) |
21 |
9 4 6 7 5 3 14
|
imasaddval |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( ( F ` x ) ( +g ` ( F "s W ) ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
22 |
21
|
3expb |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( F ` x ) ( +g ` ( F "s W ) ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
23 |
22
|
eqcomd |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) ( +g ` ( F "s W ) ) ( F ` y ) ) ) |
24 |
11
|
simprd |
|- ( ph -> ( F ` ( 0g ` W ) ) = ( 0g ` ( F "s W ) ) ) |
25 |
1 13 3 14 10 15 5 12 20 23 24
|
ismhmd |
|- ( ph -> F e. ( W MndHom ( F "s W ) ) ) |
26 |
12 25
|
jca |
|- ( ph -> ( ( F "s W ) e. Mnd /\ F e. ( W MndHom ( F "s W ) ) ) ) |