| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasmnd.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasmnd.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasmnd.p |  |-  .+ = ( +g ` R ) | 
						
							| 4 |  | imasmnd.f |  |-  ( ph -> F : V -onto-> B ) | 
						
							| 5 |  | imasmnd.e |  |-  ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) | 
						
							| 6 |  | imasmnd.r |  |-  ( ph -> R e. Mnd ) | 
						
							| 7 |  | imasmnd.z |  |-  .0. = ( 0g ` R ) | 
						
							| 8 | 6 | 3ad2ant1 |  |-  ( ( ph /\ x e. V /\ y e. V ) -> R e. Mnd ) | 
						
							| 9 |  | simp2 |  |-  ( ( ph /\ x e. V /\ y e. V ) -> x e. V ) | 
						
							| 10 | 2 | 3ad2ant1 |  |-  ( ( ph /\ x e. V /\ y e. V ) -> V = ( Base ` R ) ) | 
						
							| 11 | 9 10 | eleqtrd |  |-  ( ( ph /\ x e. V /\ y e. V ) -> x e. ( Base ` R ) ) | 
						
							| 12 |  | simp3 |  |-  ( ( ph /\ x e. V /\ y e. V ) -> y e. V ) | 
						
							| 13 | 12 10 | eleqtrd |  |-  ( ( ph /\ x e. V /\ y e. V ) -> y e. ( Base ` R ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 15 | 14 3 | mndcl |  |-  ( ( R e. Mnd /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x .+ y ) e. ( Base ` R ) ) | 
						
							| 16 | 8 11 13 15 | syl3anc |  |-  ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. ( Base ` R ) ) | 
						
							| 17 | 16 10 | eleqtrrd |  |-  ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) | 
						
							| 18 | 6 | adantr |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> R e. Mnd ) | 
						
							| 19 | 11 | 3adant3r3 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. ( Base ` R ) ) | 
						
							| 20 | 13 | 3adant3r3 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> y e. ( Base ` R ) ) | 
						
							| 21 |  | simpr3 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) | 
						
							| 22 | 2 | adantr |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> V = ( Base ` R ) ) | 
						
							| 23 | 21 22 | eleqtrd |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. ( Base ` R ) ) | 
						
							| 24 | 14 3 | mndass |  |-  ( ( R e. Mnd /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) | 
						
							| 25 | 18 19 20 23 24 | syl13anc |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) | 
						
							| 27 | 14 7 | mndidcl |  |-  ( R e. Mnd -> .0. e. ( Base ` R ) ) | 
						
							| 28 | 6 27 | syl |  |-  ( ph -> .0. e. ( Base ` R ) ) | 
						
							| 29 | 28 2 | eleqtrrd |  |-  ( ph -> .0. e. V ) | 
						
							| 30 | 2 | eleq2d |  |-  ( ph -> ( x e. V <-> x e. ( Base ` R ) ) ) | 
						
							| 31 | 30 | biimpa |  |-  ( ( ph /\ x e. V ) -> x e. ( Base ` R ) ) | 
						
							| 32 | 14 3 7 | mndlid |  |-  ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( .0. .+ x ) = x ) | 
						
							| 33 | 6 31 32 | syl2an2r |  |-  ( ( ph /\ x e. V ) -> ( .0. .+ x ) = x ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` x ) ) | 
						
							| 35 | 14 3 7 | mndrid |  |-  ( ( R e. Mnd /\ x e. ( Base ` R ) ) -> ( x .+ .0. ) = x ) | 
						
							| 36 | 6 31 35 | syl2an2r |  |-  ( ( ph /\ x e. V ) -> ( x .+ .0. ) = x ) | 
						
							| 37 | 36 | fveq2d |  |-  ( ( ph /\ x e. V ) -> ( F ` ( x .+ .0. ) ) = ( F ` x ) ) | 
						
							| 38 | 1 2 3 4 5 6 17 26 29 34 37 | imasmnd2 |  |-  ( ph -> ( U e. Mnd /\ ( F ` .0. ) = ( 0g ` U ) ) ) |