| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasmnd.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasmnd.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasmnd.p |  |-  .+ = ( +g ` R ) | 
						
							| 4 |  | imasmnd.f |  |-  ( ph -> F : V -onto-> B ) | 
						
							| 5 |  | imasmnd.e |  |-  ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) | 
						
							| 6 |  | imasmnd2.r |  |-  ( ph -> R e. W ) | 
						
							| 7 |  | imasmnd2.1 |  |-  ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) | 
						
							| 8 |  | imasmnd2.2 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) | 
						
							| 9 |  | imasmnd2.3 |  |-  ( ph -> .0. e. V ) | 
						
							| 10 |  | imasmnd2.4 |  |-  ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` x ) ) | 
						
							| 11 |  | imasmnd2.5 |  |-  ( ( ph /\ x e. V ) -> ( F ` ( x .+ .0. ) ) = ( F ` x ) ) | 
						
							| 12 | 1 2 4 6 | imasbas |  |-  ( ph -> B = ( Base ` U ) ) | 
						
							| 13 |  | eqidd |  |-  ( ph -> ( +g ` U ) = ( +g ` U ) ) | 
						
							| 14 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 15 | 7 | 3expb |  |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) | 
						
							| 16 | 15 | caovclg |  |-  ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .+ q ) e. V ) | 
						
							| 17 | 4 5 1 2 6 3 14 16 | imasaddf |  |-  ( ph -> ( +g ` U ) : ( B X. B ) --> B ) | 
						
							| 18 |  | fovcdm |  |-  ( ( ( +g ` U ) : ( B X. B ) --> B /\ u e. B /\ v e. B ) -> ( u ( +g ` U ) v ) e. B ) | 
						
							| 19 | 17 18 | syl3an1 |  |-  ( ( ph /\ u e. B /\ v e. B ) -> ( u ( +g ` U ) v ) e. B ) | 
						
							| 20 |  | forn |  |-  ( F : V -onto-> B -> ran F = B ) | 
						
							| 21 | 4 20 | syl |  |-  ( ph -> ran F = B ) | 
						
							| 22 | 21 | eleq2d |  |-  ( ph -> ( u e. ran F <-> u e. B ) ) | 
						
							| 23 | 21 | eleq2d |  |-  ( ph -> ( v e. ran F <-> v e. B ) ) | 
						
							| 24 | 21 | eleq2d |  |-  ( ph -> ( w e. ran F <-> w e. B ) ) | 
						
							| 25 | 22 23 24 | 3anbi123d |  |-  ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( u e. B /\ v e. B /\ w e. B ) ) ) | 
						
							| 26 |  | fofn |  |-  ( F : V -onto-> B -> F Fn V ) | 
						
							| 27 | 4 26 | syl |  |-  ( ph -> F Fn V ) | 
						
							| 28 |  | fvelrnb |  |-  ( F Fn V -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) | 
						
							| 29 |  | fvelrnb |  |-  ( F Fn V -> ( v e. ran F <-> E. y e. V ( F ` y ) = v ) ) | 
						
							| 30 |  | fvelrnb |  |-  ( F Fn V -> ( w e. ran F <-> E. z e. V ( F ` z ) = w ) ) | 
						
							| 31 | 28 29 30 | 3anbi123d |  |-  ( F Fn V -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) | 
						
							| 32 | 27 31 | syl |  |-  ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) | 
						
							| 33 | 25 32 | bitr3d |  |-  ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) | 
						
							| 34 |  | 3reeanv |  |-  ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) | 
						
							| 35 | 33 34 | bitr4di |  |-  ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) ) ) | 
						
							| 36 |  | simpl |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ph ) | 
						
							| 37 | 7 | 3adant3r3 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) e. V ) | 
						
							| 38 |  | simpr3 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) | 
						
							| 39 | 4 5 1 2 6 3 14 | imasaddval |  |-  ( ( ph /\ ( x .+ y ) e. V /\ z e. V ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .+ z ) ) ) | 
						
							| 40 | 36 37 38 39 | syl3anc |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .+ z ) ) ) | 
						
							| 41 |  | simpr1 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. V ) | 
						
							| 42 | 16 | caovclg |  |-  ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) | 
						
							| 43 | 42 | 3adantr1 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) | 
						
							| 44 | 4 5 1 2 6 3 14 | imasaddval |  |-  ( ( ph /\ x e. V /\ ( y .+ z ) e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) | 
						
							| 45 | 36 41 43 44 | syl3anc |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) | 
						
							| 46 | 8 40 45 | 3eqtr4d |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) ) | 
						
							| 47 | 4 5 1 2 6 3 14 | imasaddval |  |-  ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) | 
						
							| 48 | 47 | 3adant3r3 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) | 
						
							| 49 | 48 | oveq1d |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) ) | 
						
							| 50 | 4 5 1 2 6 3 14 | imasaddval |  |-  ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) | 
						
							| 51 | 50 | 3adant3r1 |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) | 
						
							| 52 | 51 | oveq2d |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) ) | 
						
							| 53 | 46 49 52 | 3eqtr4d |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) ) | 
						
							| 54 |  | simp1 |  |-  ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` x ) = u ) | 
						
							| 55 |  | simp2 |  |-  ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` y ) = v ) | 
						
							| 56 | 54 55 | oveq12d |  |-  ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( u ( +g ` U ) v ) ) | 
						
							| 57 |  | simp3 |  |-  ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` z ) = w ) | 
						
							| 58 | 56 57 | oveq12d |  |-  ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( u ( +g ` U ) v ) ( +g ` U ) w ) ) | 
						
							| 59 | 55 57 | oveq12d |  |-  ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( v ( +g ` U ) w ) ) | 
						
							| 60 | 54 59 | oveq12d |  |-  ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) | 
						
							| 61 | 58 60 | eqeq12d |  |-  ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) <-> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) | 
						
							| 62 | 53 61 | syl5ibcom |  |-  ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) | 
						
							| 63 | 62 | 3exp2 |  |-  ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) ) ) ) | 
						
							| 64 | 63 | imp32 |  |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) ) | 
						
							| 65 | 64 | rexlimdv |  |-  ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) | 
						
							| 66 | 65 | rexlimdvva |  |-  ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) | 
						
							| 67 | 35 66 | sylbid |  |-  ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) | 
						
							| 68 | 67 | imp |  |-  ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) | 
						
							| 69 |  | fof |  |-  ( F : V -onto-> B -> F : V --> B ) | 
						
							| 70 | 4 69 | syl |  |-  ( ph -> F : V --> B ) | 
						
							| 71 | 70 9 | ffvelcdmd |  |-  ( ph -> ( F ` .0. ) e. B ) | 
						
							| 72 | 27 28 | syl |  |-  ( ph -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) | 
						
							| 73 | 22 72 | bitr3d |  |-  ( ph -> ( u e. B <-> E. x e. V ( F ` x ) = u ) ) | 
						
							| 74 |  | simpl |  |-  ( ( ph /\ x e. V ) -> ph ) | 
						
							| 75 | 9 | adantr |  |-  ( ( ph /\ x e. V ) -> .0. e. V ) | 
						
							| 76 |  | simpr |  |-  ( ( ph /\ x e. V ) -> x e. V ) | 
						
							| 77 | 4 5 1 2 6 3 14 | imasaddval |  |-  ( ( ph /\ .0. e. V /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` ( .0. .+ x ) ) ) | 
						
							| 78 | 74 75 76 77 | syl3anc |  |-  ( ( ph /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` ( .0. .+ x ) ) ) | 
						
							| 79 | 78 10 | eqtrd |  |-  ( ( ph /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` x ) ) | 
						
							| 80 |  | oveq2 |  |-  ( ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( ( F ` .0. ) ( +g ` U ) u ) ) | 
						
							| 81 |  | id |  |-  ( ( F ` x ) = u -> ( F ` x ) = u ) | 
						
							| 82 | 80 81 | eqeq12d |  |-  ( ( F ` x ) = u -> ( ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` x ) <-> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) | 
						
							| 83 | 79 82 | syl5ibcom |  |-  ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) | 
						
							| 84 | 83 | rexlimdva |  |-  ( ph -> ( E. x e. V ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) | 
						
							| 85 | 73 84 | sylbid |  |-  ( ph -> ( u e. B -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) | 
						
							| 86 | 85 | imp |  |-  ( ( ph /\ u e. B ) -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) | 
						
							| 87 | 4 5 1 2 6 3 14 | imasaddval |  |-  ( ( ph /\ x e. V /\ .0. e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` .0. ) ) = ( F ` ( x .+ .0. ) ) ) | 
						
							| 88 | 75 87 | mpd3an3 |  |-  ( ( ph /\ x e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` .0. ) ) = ( F ` ( x .+ .0. ) ) ) | 
						
							| 89 | 88 11 | eqtrd |  |-  ( ( ph /\ x e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` .0. ) ) = ( F ` x ) ) | 
						
							| 90 |  | oveq1 |  |-  ( ( F ` x ) = u -> ( ( F ` x ) ( +g ` U ) ( F ` .0. ) ) = ( u ( +g ` U ) ( F ` .0. ) ) ) | 
						
							| 91 | 90 81 | eqeq12d |  |-  ( ( F ` x ) = u -> ( ( ( F ` x ) ( +g ` U ) ( F ` .0. ) ) = ( F ` x ) <-> ( u ( +g ` U ) ( F ` .0. ) ) = u ) ) | 
						
							| 92 | 89 91 | syl5ibcom |  |-  ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> ( u ( +g ` U ) ( F ` .0. ) ) = u ) ) | 
						
							| 93 | 92 | rexlimdva |  |-  ( ph -> ( E. x e. V ( F ` x ) = u -> ( u ( +g ` U ) ( F ` .0. ) ) = u ) ) | 
						
							| 94 | 73 93 | sylbid |  |-  ( ph -> ( u e. B -> ( u ( +g ` U ) ( F ` .0. ) ) = u ) ) | 
						
							| 95 | 94 | imp |  |-  ( ( ph /\ u e. B ) -> ( u ( +g ` U ) ( F ` .0. ) ) = u ) | 
						
							| 96 | 12 13 19 68 71 86 95 | ismndd |  |-  ( ph -> U e. Mnd ) | 
						
							| 97 | 12 13 71 86 95 | grpidd |  |-  ( ph -> ( F ` .0. ) = ( 0g ` U ) ) | 
						
							| 98 | 96 97 | jca |  |-  ( ph -> ( U e. Mnd /\ ( F ` .0. ) = ( 0g ` U ) ) ) |