Metamath Proof Explorer


Theorem imasng

Description: The image of a singleton. (Contributed by NM, 8-May-2005)

Ref Expression
Assertion imasng
|- ( A e. B -> ( R " { A } ) = { y | A R y } )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. B -> A e. _V )
2 dfima2
 |-  ( R " { A } ) = { y | E. x e. { A } x R y }
3 breq1
 |-  ( x = A -> ( x R y <-> A R y ) )
4 3 rexsng
 |-  ( A e. _V -> ( E. x e. { A } x R y <-> A R y ) )
5 4 abbidv
 |-  ( A e. _V -> { y | E. x e. { A } x R y } = { y | A R y } )
6 2 5 eqtrid
 |-  ( A e. _V -> ( R " { A } ) = { y | A R y } )
7 1 6 syl
 |-  ( A e. B -> ( R " { A } ) = { y | A R y } )