Description: The image of a singleton. (Contributed by NM, 8-May-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | imasng | |- ( A e. B -> ( R " { A } ) = { y | A R y } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |- ( A e. B -> A e. _V ) |
|
2 | dfima2 | |- ( R " { A } ) = { y | E. x e. { A } x R y } |
|
3 | breq1 | |- ( x = A -> ( x R y <-> A R y ) ) |
|
4 | 3 | rexsng | |- ( A e. _V -> ( E. x e. { A } x R y <-> A R y ) ) |
5 | 4 | abbidv | |- ( A e. _V -> { y | E. x e. { A } x R y } = { y | A R y } ) |
6 | 2 5 | eqtrid | |- ( A e. _V -> ( R " { A } ) = { y | A R y } ) |
7 | 1 6 | syl | |- ( A e. B -> ( R " { A } ) = { y | A R y } ) |