Step |
Hyp |
Ref |
Expression |
1 |
|
imasmhm.b |
|- B = ( Base ` W ) |
2 |
|
imasmhm.f |
|- ( ph -> F : B --> C ) |
3 |
|
imasmhm.1 |
|- .+ = ( +g ` W ) |
4 |
|
imasmhm.2 |
|- ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
5 |
|
imasrhm.3 |
|- .x. = ( .r ` W ) |
6 |
|
imasrhm.4 |
|- ( ( ph /\ ( a e. B /\ b e. B ) /\ ( p e. B /\ q e. B ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
7 |
|
imasrhm.w |
|- ( ph -> W e. Ring ) |
8 |
|
eqidd |
|- ( ph -> ( F "s W ) = ( F "s W ) ) |
9 |
1
|
a1i |
|- ( ph -> B = ( Base ` W ) ) |
10 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
11 |
|
fimadmfo |
|- ( F : B --> C -> F : B -onto-> ( F " B ) ) |
12 |
2 11
|
syl |
|- ( ph -> F : B -onto-> ( F " B ) ) |
13 |
8 9 3 5 10 12 4 6 7
|
imasring |
|- ( ph -> ( ( F "s W ) e. Ring /\ ( F ` ( 1r ` W ) ) = ( 1r ` ( F "s W ) ) ) ) |
14 |
13
|
simpld |
|- ( ph -> ( F "s W ) e. Ring ) |
15 |
|
eqid |
|- ( 1r ` ( F "s W ) ) = ( 1r ` ( F "s W ) ) |
16 |
|
eqid |
|- ( .r ` ( F "s W ) ) = ( .r ` ( F "s W ) ) |
17 |
13
|
simprd |
|- ( ph -> ( F ` ( 1r ` W ) ) = ( 1r ` ( F "s W ) ) ) |
18 |
12 6 8 9 7 5 16
|
imasmulval |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( ( F ` x ) ( .r ` ( F "s W ) ) ( F ` y ) ) = ( F ` ( x .x. y ) ) ) |
19 |
18
|
3expb |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( F ` x ) ( .r ` ( F "s W ) ) ( F ` y ) ) = ( F ` ( x .x. y ) ) ) |
20 |
19
|
eqcomd |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) ( .r ` ( F "s W ) ) ( F ` y ) ) ) |
21 |
|
eqid |
|- ( Base ` ( F "s W ) ) = ( Base ` ( F "s W ) ) |
22 |
|
eqid |
|- ( +g ` ( F "s W ) ) = ( +g ` ( F "s W ) ) |
23 |
|
fof |
|- ( F : B -onto-> ( F " B ) -> F : B --> ( F " B ) ) |
24 |
12 23
|
syl |
|- ( ph -> F : B --> ( F " B ) ) |
25 |
8 9 12 7
|
imasbas |
|- ( ph -> ( F " B ) = ( Base ` ( F "s W ) ) ) |
26 |
25
|
feq3d |
|- ( ph -> ( F : B --> ( F " B ) <-> F : B --> ( Base ` ( F "s W ) ) ) ) |
27 |
24 26
|
mpbid |
|- ( ph -> F : B --> ( Base ` ( F "s W ) ) ) |
28 |
12 4 8 9 7 3 22
|
imasaddval |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( ( F ` x ) ( +g ` ( F "s W ) ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
29 |
28
|
3expb |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( F ` x ) ( +g ` ( F "s W ) ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
30 |
29
|
eqcomd |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) ( +g ` ( F "s W ) ) ( F ` y ) ) ) |
31 |
1 10 15 5 16 7 14 17 20 21 3 22 27 30
|
isrhmd |
|- ( ph -> F e. ( W RingHom ( F "s W ) ) ) |
32 |
14 31
|
jca |
|- ( ph -> ( ( F "s W ) e. Ring /\ F e. ( W RingHom ( F "s W ) ) ) ) |