Step |
Hyp |
Ref |
Expression |
1 |
|
imasring.u |
|- ( ph -> U = ( F "s R ) ) |
2 |
|
imasring.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
imasring.p |
|- .+ = ( +g ` R ) |
4 |
|
imasring.t |
|- .x. = ( .r ` R ) |
5 |
|
imasring.o |
|- .1. = ( 1r ` R ) |
6 |
|
imasring.f |
|- ( ph -> F : V -onto-> B ) |
7 |
|
imasring.e1 |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
8 |
|
imasring.e2 |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
9 |
|
imasring.r |
|- ( ph -> R e. Ring ) |
10 |
1 2 6 9
|
imasbas |
|- ( ph -> B = ( Base ` U ) ) |
11 |
|
eqidd |
|- ( ph -> ( +g ` U ) = ( +g ` U ) ) |
12 |
|
eqidd |
|- ( ph -> ( .r ` U ) = ( .r ` U ) ) |
13 |
3
|
a1i |
|- ( ph -> .+ = ( +g ` R ) ) |
14 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
15 |
9 14
|
syl |
|- ( ph -> R e. Grp ) |
16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
17 |
1 2 13 6 7 15 16
|
imasgrp |
|- ( ph -> ( U e. Grp /\ ( F ` ( 0g ` R ) ) = ( 0g ` U ) ) ) |
18 |
17
|
simpld |
|- ( ph -> U e. Grp ) |
19 |
|
eqid |
|- ( .r ` U ) = ( .r ` U ) |
20 |
9
|
adantr |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> R e. Ring ) |
21 |
|
simprl |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> u e. V ) |
22 |
2
|
adantr |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> V = ( Base ` R ) ) |
23 |
21 22
|
eleqtrd |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> u e. ( Base ` R ) ) |
24 |
|
simprr |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> v e. V ) |
25 |
24 22
|
eleqtrd |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> v e. ( Base ` R ) ) |
26 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
27 |
26 4
|
ringcl |
|- ( ( R e. Ring /\ u e. ( Base ` R ) /\ v e. ( Base ` R ) ) -> ( u .x. v ) e. ( Base ` R ) ) |
28 |
20 23 25 27
|
syl3anc |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .x. v ) e. ( Base ` R ) ) |
29 |
28 22
|
eleqtrrd |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .x. v ) e. V ) |
30 |
29
|
caovclg |
|- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
31 |
6 8 1 2 9 4 19 30
|
imasmulf |
|- ( ph -> ( .r ` U ) : ( B X. B ) --> B ) |
32 |
|
fovrn |
|- ( ( ( .r ` U ) : ( B X. B ) --> B /\ u e. B /\ v e. B ) -> ( u ( .r ` U ) v ) e. B ) |
33 |
31 32
|
syl3an1 |
|- ( ( ph /\ u e. B /\ v e. B ) -> ( u ( .r ` U ) v ) e. B ) |
34 |
|
forn |
|- ( F : V -onto-> B -> ran F = B ) |
35 |
6 34
|
syl |
|- ( ph -> ran F = B ) |
36 |
35
|
eleq2d |
|- ( ph -> ( u e. ran F <-> u e. B ) ) |
37 |
35
|
eleq2d |
|- ( ph -> ( v e. ran F <-> v e. B ) ) |
38 |
35
|
eleq2d |
|- ( ph -> ( w e. ran F <-> w e. B ) ) |
39 |
36 37 38
|
3anbi123d |
|- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( u e. B /\ v e. B /\ w e. B ) ) ) |
40 |
|
fofn |
|- ( F : V -onto-> B -> F Fn V ) |
41 |
6 40
|
syl |
|- ( ph -> F Fn V ) |
42 |
|
fvelrnb |
|- ( F Fn V -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
43 |
|
fvelrnb |
|- ( F Fn V -> ( v e. ran F <-> E. y e. V ( F ` y ) = v ) ) |
44 |
|
fvelrnb |
|- ( F Fn V -> ( w e. ran F <-> E. z e. V ( F ` z ) = w ) ) |
45 |
42 43 44
|
3anbi123d |
|- ( F Fn V -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
46 |
41 45
|
syl |
|- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
47 |
39 46
|
bitr3d |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
48 |
|
3reeanv |
|- ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) |
49 |
47 48
|
bitr4di |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) ) ) |
50 |
9
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> R e. Ring ) |
51 |
|
simp2 |
|- ( ( ph /\ x e. V /\ y e. V ) -> x e. V ) |
52 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. V /\ y e. V ) -> V = ( Base ` R ) ) |
53 |
51 52
|
eleqtrd |
|- ( ( ph /\ x e. V /\ y e. V ) -> x e. ( Base ` R ) ) |
54 |
53
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. ( Base ` R ) ) |
55 |
|
simp3 |
|- ( ( ph /\ x e. V /\ y e. V ) -> y e. V ) |
56 |
55 52
|
eleqtrd |
|- ( ( ph /\ x e. V /\ y e. V ) -> y e. ( Base ` R ) ) |
57 |
56
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> y e. ( Base ` R ) ) |
58 |
|
simpr3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) |
59 |
2
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> V = ( Base ` R ) ) |
60 |
58 59
|
eleqtrd |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. ( Base ` R ) ) |
61 |
26 4
|
ringass |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
62 |
50 54 57 60 61
|
syl13anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
63 |
62
|
fveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .x. y ) .x. z ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
64 |
|
simpl |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ph ) |
65 |
29
|
caovclg |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .x. y ) e. V ) |
66 |
65
|
3adantr3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. y ) e. V ) |
67 |
6 8 1 2 9 4 19
|
imasmulval |
|- ( ( ph /\ ( x .x. y ) e. V /\ z e. V ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .x. y ) .x. z ) ) ) |
68 |
64 66 58 67
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .x. y ) .x. z ) ) ) |
69 |
|
simpr1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. V ) |
70 |
29
|
caovclg |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .x. z ) e. V ) |
71 |
70
|
3adantr1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .x. z ) e. V ) |
72 |
6 8 1 2 9 4 19
|
imasmulval |
|- ( ( ph /\ x e. V /\ ( y .x. z ) e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
73 |
64 69 71 72
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
74 |
63 68 73
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) ) |
75 |
6 8 1 2 9 4 19
|
imasmulval |
|- ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( F ` ( x .x. y ) ) ) |
76 |
75
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( F ` ( x .x. y ) ) ) |
77 |
76
|
oveq1d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) ) |
78 |
6 8 1 2 9 4 19
|
imasmulval |
|- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( F ` ( y .x. z ) ) ) |
79 |
78
|
3adant3r1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( F ` ( y .x. z ) ) ) |
80 |
79
|
oveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) ) |
81 |
74 77 80
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) ) |
82 |
|
simp1 |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` x ) = u ) |
83 |
|
simp2 |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` y ) = v ) |
84 |
82 83
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( u ( .r ` U ) v ) ) |
85 |
|
simp3 |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` z ) = w ) |
86 |
84 85
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( u ( .r ` U ) v ) ( .r ` U ) w ) ) |
87 |
83 85
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( v ( .r ` U ) w ) ) |
88 |
82 87
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) |
89 |
86 88
|
eqeq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) <-> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
90 |
81 89
|
syl5ibcom |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
91 |
90
|
3exp2 |
|- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) ) ) ) |
92 |
91
|
imp32 |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) ) |
93 |
92
|
rexlimdv |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
94 |
93
|
rexlimdvva |
|- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
95 |
49 94
|
sylbid |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
96 |
95
|
imp |
|- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) |
97 |
26 3 4
|
ringdi |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
98 |
50 54 57 60 97
|
syl13anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
99 |
98
|
fveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( x .x. ( y .+ z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
100 |
26 3
|
ringacl |
|- ( ( R e. Ring /\ u e. ( Base ` R ) /\ v e. ( Base ` R ) ) -> ( u .+ v ) e. ( Base ` R ) ) |
101 |
20 23 25 100
|
syl3anc |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .+ v ) e. ( Base ` R ) ) |
102 |
101 22
|
eleqtrrd |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .+ v ) e. V ) |
103 |
102
|
caovclg |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
104 |
103
|
3adantr1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
105 |
6 8 1 2 9 4 19
|
imasmulval |
|- ( ( ph /\ x e. V /\ ( y .+ z ) e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .x. ( y .+ z ) ) ) ) |
106 |
64 69 104 105
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .x. ( y .+ z ) ) ) ) |
107 |
29
|
caovclg |
|- ( ( ph /\ ( x e. V /\ z e. V ) ) -> ( x .x. z ) e. V ) |
108 |
107
|
3adantr2 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. z ) e. V ) |
109 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
110 |
6 7 1 2 9 3 109
|
imasaddval |
|- ( ( ph /\ ( x .x. y ) e. V /\ ( x .x. z ) e. V ) -> ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
111 |
64 66 108 110
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
112 |
99 106 111
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) ) |
113 |
6 7 1 2 9 3 109
|
imasaddval |
|- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
114 |
113
|
3adant3r1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
115 |
114
|
oveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) ) |
116 |
6 8 1 2 9 4 19
|
imasmulval |
|- ( ( ph /\ x e. V /\ z e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( F ` ( x .x. z ) ) ) |
117 |
116
|
3adant3r2 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( F ` ( x .x. z ) ) ) |
118 |
76 117
|
oveq12d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) ) |
119 |
112 115 118
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) ) |
120 |
83 85
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( v ( +g ` U ) w ) ) |
121 |
82 120
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( u ( .r ` U ) ( v ( +g ` U ) w ) ) ) |
122 |
82 85
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( u ( .r ` U ) w ) ) |
123 |
84 122
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) |
124 |
121 123
|
eqeq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) <-> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
125 |
119 124
|
syl5ibcom |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
126 |
125
|
3exp2 |
|- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) ) ) ) |
127 |
126
|
imp32 |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) ) |
128 |
127
|
rexlimdv |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
129 |
128
|
rexlimdvva |
|- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
130 |
49 129
|
sylbid |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
131 |
130
|
imp |
|- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) |
132 |
26 3 4
|
ringdir |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
133 |
50 54 57 60 132
|
syl13anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
134 |
133
|
fveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .x. z ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
135 |
102
|
caovclg |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
136 |
135
|
3adantr3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) e. V ) |
137 |
6 8 1 2 9 4 19
|
imasmulval |
|- ( ( ph /\ ( x .+ y ) e. V /\ z e. V ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .x. z ) ) ) |
138 |
64 136 58 137
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .x. z ) ) ) |
139 |
6 7 1 2 9 3 109
|
imasaddval |
|- ( ( ph /\ ( x .x. z ) e. V /\ ( y .x. z ) e. V ) -> ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
140 |
64 108 71 139
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
141 |
134 138 140
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) ) |
142 |
6 7 1 2 9 3 109
|
imasaddval |
|- ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
143 |
142
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
144 |
143
|
oveq1d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) ) |
145 |
117 79
|
oveq12d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) ) |
146 |
141 144 145
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) ) |
147 |
82 83
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( u ( +g ` U ) v ) ) |
148 |
147 85
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( u ( +g ` U ) v ) ( .r ` U ) w ) ) |
149 |
122 87
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) |
150 |
148 149
|
eqeq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) <-> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
151 |
146 150
|
syl5ibcom |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
152 |
151
|
3exp2 |
|- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) ) ) ) |
153 |
152
|
imp32 |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) ) |
154 |
153
|
rexlimdv |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
155 |
154
|
rexlimdvva |
|- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
156 |
49 155
|
sylbid |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
157 |
156
|
imp |
|- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) |
158 |
|
fof |
|- ( F : V -onto-> B -> F : V --> B ) |
159 |
6 158
|
syl |
|- ( ph -> F : V --> B ) |
160 |
26 5
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
161 |
9 160
|
syl |
|- ( ph -> .1. e. ( Base ` R ) ) |
162 |
161 2
|
eleqtrrd |
|- ( ph -> .1. e. V ) |
163 |
159 162
|
ffvelrnd |
|- ( ph -> ( F ` .1. ) e. B ) |
164 |
41 42
|
syl |
|- ( ph -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
165 |
36 164
|
bitr3d |
|- ( ph -> ( u e. B <-> E. x e. V ( F ` x ) = u ) ) |
166 |
|
simpl |
|- ( ( ph /\ x e. V ) -> ph ) |
167 |
162
|
adantr |
|- ( ( ph /\ x e. V ) -> .1. e. V ) |
168 |
|
simpr |
|- ( ( ph /\ x e. V ) -> x e. V ) |
169 |
6 8 1 2 9 4 19
|
imasmulval |
|- ( ( ph /\ .1. e. V /\ x e. V ) -> ( ( F ` .1. ) ( .r ` U ) ( F ` x ) ) = ( F ` ( .1. .x. x ) ) ) |
170 |
166 167 168 169
|
syl3anc |
|- ( ( ph /\ x e. V ) -> ( ( F ` .1. ) ( .r ` U ) ( F ` x ) ) = ( F ` ( .1. .x. x ) ) ) |
171 |
2
|
eleq2d |
|- ( ph -> ( x e. V <-> x e. ( Base ` R ) ) ) |
172 |
171
|
biimpa |
|- ( ( ph /\ x e. V ) -> x e. ( Base ` R ) ) |
173 |
26 4 5
|
ringlidm |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( .1. .x. x ) = x ) |
174 |
9 172 173
|
syl2an2r |
|- ( ( ph /\ x e. V ) -> ( .1. .x. x ) = x ) |
175 |
174
|
fveq2d |
|- ( ( ph /\ x e. V ) -> ( F ` ( .1. .x. x ) ) = ( F ` x ) ) |
176 |
170 175
|
eqtrd |
|- ( ( ph /\ x e. V ) -> ( ( F ` .1. ) ( .r ` U ) ( F ` x ) ) = ( F ` x ) ) |
177 |
|
oveq2 |
|- ( ( F ` x ) = u -> ( ( F ` .1. ) ( .r ` U ) ( F ` x ) ) = ( ( F ` .1. ) ( .r ` U ) u ) ) |
178 |
|
id |
|- ( ( F ` x ) = u -> ( F ` x ) = u ) |
179 |
177 178
|
eqeq12d |
|- ( ( F ` x ) = u -> ( ( ( F ` .1. ) ( .r ` U ) ( F ` x ) ) = ( F ` x ) <-> ( ( F ` .1. ) ( .r ` U ) u ) = u ) ) |
180 |
176 179
|
syl5ibcom |
|- ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> ( ( F ` .1. ) ( .r ` U ) u ) = u ) ) |
181 |
180
|
rexlimdva |
|- ( ph -> ( E. x e. V ( F ` x ) = u -> ( ( F ` .1. ) ( .r ` U ) u ) = u ) ) |
182 |
165 181
|
sylbid |
|- ( ph -> ( u e. B -> ( ( F ` .1. ) ( .r ` U ) u ) = u ) ) |
183 |
182
|
imp |
|- ( ( ph /\ u e. B ) -> ( ( F ` .1. ) ( .r ` U ) u ) = u ) |
184 |
6 8 1 2 9 4 19
|
imasmulval |
|- ( ( ph /\ x e. V /\ .1. e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` .1. ) ) = ( F ` ( x .x. .1. ) ) ) |
185 |
167 184
|
mpd3an3 |
|- ( ( ph /\ x e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` .1. ) ) = ( F ` ( x .x. .1. ) ) ) |
186 |
26 4 5
|
ringridm |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( x .x. .1. ) = x ) |
187 |
9 172 186
|
syl2an2r |
|- ( ( ph /\ x e. V ) -> ( x .x. .1. ) = x ) |
188 |
187
|
fveq2d |
|- ( ( ph /\ x e. V ) -> ( F ` ( x .x. .1. ) ) = ( F ` x ) ) |
189 |
185 188
|
eqtrd |
|- ( ( ph /\ x e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` .1. ) ) = ( F ` x ) ) |
190 |
|
oveq1 |
|- ( ( F ` x ) = u -> ( ( F ` x ) ( .r ` U ) ( F ` .1. ) ) = ( u ( .r ` U ) ( F ` .1. ) ) ) |
191 |
190 178
|
eqeq12d |
|- ( ( F ` x ) = u -> ( ( ( F ` x ) ( .r ` U ) ( F ` .1. ) ) = ( F ` x ) <-> ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) |
192 |
189 191
|
syl5ibcom |
|- ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) |
193 |
192
|
rexlimdva |
|- ( ph -> ( E. x e. V ( F ` x ) = u -> ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) |
194 |
165 193
|
sylbid |
|- ( ph -> ( u e. B -> ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) |
195 |
194
|
imp |
|- ( ( ph /\ u e. B ) -> ( u ( .r ` U ) ( F ` .1. ) ) = u ) |
196 |
10 11 12 18 33 96 131 157 163 183 195
|
isringd |
|- ( ph -> U e. Ring ) |
197 |
163 10
|
eleqtrd |
|- ( ph -> ( F ` .1. ) e. ( Base ` U ) ) |
198 |
10
|
eleq2d |
|- ( ph -> ( u e. B <-> u e. ( Base ` U ) ) ) |
199 |
182 194
|
jcad |
|- ( ph -> ( u e. B -> ( ( ( F ` .1. ) ( .r ` U ) u ) = u /\ ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) ) |
200 |
198 199
|
sylbird |
|- ( ph -> ( u e. ( Base ` U ) -> ( ( ( F ` .1. ) ( .r ` U ) u ) = u /\ ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) ) |
201 |
200
|
ralrimiv |
|- ( ph -> A. u e. ( Base ` U ) ( ( ( F ` .1. ) ( .r ` U ) u ) = u /\ ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) |
202 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
203 |
|
eqid |
|- ( 1r ` U ) = ( 1r ` U ) |
204 |
202 19 203
|
isringid |
|- ( U e. Ring -> ( ( ( F ` .1. ) e. ( Base ` U ) /\ A. u e. ( Base ` U ) ( ( ( F ` .1. ) ( .r ` U ) u ) = u /\ ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) <-> ( 1r ` U ) = ( F ` .1. ) ) ) |
205 |
196 204
|
syl |
|- ( ph -> ( ( ( F ` .1. ) e. ( Base ` U ) /\ A. u e. ( Base ` U ) ( ( ( F ` .1. ) ( .r ` U ) u ) = u /\ ( u ( .r ` U ) ( F ` .1. ) ) = u ) ) <-> ( 1r ` U ) = ( F ` .1. ) ) ) |
206 |
197 201 205
|
mpbi2and |
|- ( ph -> ( 1r ` U ) = ( F ` .1. ) ) |
207 |
206
|
eqcomd |
|- ( ph -> ( F ` .1. ) = ( 1r ` U ) ) |
208 |
196 207
|
jca |
|- ( ph -> ( U e. Ring /\ ( F ` .1. ) = ( 1r ` U ) ) ) |