| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasrng.u |
|- ( ph -> U = ( F "s R ) ) |
| 2 |
|
imasrng.v |
|- ( ph -> V = ( Base ` R ) ) |
| 3 |
|
imasrng.p |
|- .+ = ( +g ` R ) |
| 4 |
|
imasrng.t |
|- .x. = ( .r ` R ) |
| 5 |
|
imasrng.f |
|- ( ph -> F : V -onto-> B ) |
| 6 |
|
imasrng.e1 |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
| 7 |
|
imasrng.e2 |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
| 8 |
|
imasrng.r |
|- ( ph -> R e. Rng ) |
| 9 |
1 2 5 8
|
imasbas |
|- ( ph -> B = ( Base ` U ) ) |
| 10 |
|
eqidd |
|- ( ph -> ( +g ` U ) = ( +g ` U ) ) |
| 11 |
|
eqidd |
|- ( ph -> ( .r ` U ) = ( .r ` U ) ) |
| 12 |
3
|
a1i |
|- ( ph -> .+ = ( +g ` R ) ) |
| 13 |
|
rngabl |
|- ( R e. Rng -> R e. Abel ) |
| 14 |
8 13
|
syl |
|- ( ph -> R e. Abel ) |
| 15 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 16 |
1 2 12 5 6 14 15
|
imasabl |
|- ( ph -> ( U e. Abel /\ ( F ` ( 0g ` R ) ) = ( 0g ` U ) ) ) |
| 17 |
16
|
simpld |
|- ( ph -> U e. Abel ) |
| 18 |
|
eqid |
|- ( .r ` U ) = ( .r ` U ) |
| 19 |
8
|
adantr |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> R e. Rng ) |
| 20 |
|
simprl |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> u e. V ) |
| 21 |
2
|
adantr |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> V = ( Base ` R ) ) |
| 22 |
20 21
|
eleqtrd |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> u e. ( Base ` R ) ) |
| 23 |
|
simprr |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> v e. V ) |
| 24 |
23 21
|
eleqtrd |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> v e. ( Base ` R ) ) |
| 25 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 26 |
25 4
|
rngcl |
|- ( ( R e. Rng /\ u e. ( Base ` R ) /\ v e. ( Base ` R ) ) -> ( u .x. v ) e. ( Base ` R ) ) |
| 27 |
19 22 24 26
|
syl3anc |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .x. v ) e. ( Base ` R ) ) |
| 28 |
27 21
|
eleqtrrd |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .x. v ) e. V ) |
| 29 |
28
|
caovclg |
|- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
| 30 |
5 7 1 2 8 4 18 29
|
imasmulf |
|- ( ph -> ( .r ` U ) : ( B X. B ) --> B ) |
| 31 |
30
|
fovcld |
|- ( ( ph /\ u e. B /\ v e. B ) -> ( u ( .r ` U ) v ) e. B ) |
| 32 |
|
forn |
|- ( F : V -onto-> B -> ran F = B ) |
| 33 |
5 32
|
syl |
|- ( ph -> ran F = B ) |
| 34 |
33
|
eleq2d |
|- ( ph -> ( u e. ran F <-> u e. B ) ) |
| 35 |
33
|
eleq2d |
|- ( ph -> ( v e. ran F <-> v e. B ) ) |
| 36 |
33
|
eleq2d |
|- ( ph -> ( w e. ran F <-> w e. B ) ) |
| 37 |
34 35 36
|
3anbi123d |
|- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( u e. B /\ v e. B /\ w e. B ) ) ) |
| 38 |
|
fofn |
|- ( F : V -onto-> B -> F Fn V ) |
| 39 |
|
fvelrnb |
|- ( F Fn V -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
| 40 |
|
fvelrnb |
|- ( F Fn V -> ( v e. ran F <-> E. y e. V ( F ` y ) = v ) ) |
| 41 |
|
fvelrnb |
|- ( F Fn V -> ( w e. ran F <-> E. z e. V ( F ` z ) = w ) ) |
| 42 |
39 40 41
|
3anbi123d |
|- ( F Fn V -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 43 |
5 38 42
|
3syl |
|- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 44 |
37 43
|
bitr3d |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 45 |
|
3reeanv |
|- ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) |
| 46 |
44 45
|
bitr4di |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) ) ) |
| 47 |
8
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> R e. Rng ) |
| 48 |
|
simp2 |
|- ( ( ph /\ x e. V /\ y e. V ) -> x e. V ) |
| 49 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. V /\ y e. V ) -> V = ( Base ` R ) ) |
| 50 |
48 49
|
eleqtrd |
|- ( ( ph /\ x e. V /\ y e. V ) -> x e. ( Base ` R ) ) |
| 51 |
50
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. ( Base ` R ) ) |
| 52 |
|
simp3 |
|- ( ( ph /\ x e. V /\ y e. V ) -> y e. V ) |
| 53 |
52 49
|
eleqtrd |
|- ( ( ph /\ x e. V /\ y e. V ) -> y e. ( Base ` R ) ) |
| 54 |
53
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> y e. ( Base ` R ) ) |
| 55 |
|
simpr3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) |
| 56 |
2
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> V = ( Base ` R ) ) |
| 57 |
55 56
|
eleqtrd |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. ( Base ` R ) ) |
| 58 |
25 4
|
rngass |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
| 59 |
47 51 54 57 58
|
syl13anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
| 60 |
59
|
fveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .x. y ) .x. z ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
| 61 |
|
simpl |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ph ) |
| 62 |
28
|
caovclg |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .x. y ) e. V ) |
| 63 |
62
|
3adantr3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. y ) e. V ) |
| 64 |
5 7 1 2 8 4 18
|
imasmulval |
|- ( ( ph /\ ( x .x. y ) e. V /\ z e. V ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .x. y ) .x. z ) ) ) |
| 65 |
61 63 55 64
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .x. y ) .x. z ) ) ) |
| 66 |
|
simpr1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. V ) |
| 67 |
28
|
caovclg |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .x. z ) e. V ) |
| 68 |
67
|
3adantr1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .x. z ) e. V ) |
| 69 |
5 7 1 2 8 4 18
|
imasmulval |
|- ( ( ph /\ x e. V /\ ( y .x. z ) e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
| 70 |
61 66 68 69
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( x .x. ( y .x. z ) ) ) ) |
| 71 |
60 65 70
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) ) |
| 72 |
5 7 1 2 8 4 18
|
imasmulval |
|- ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( F ` ( x .x. y ) ) ) |
| 73 |
72
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( F ` ( x .x. y ) ) ) |
| 74 |
73
|
oveq1d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .x. y ) ) ( .r ` U ) ( F ` z ) ) ) |
| 75 |
5 7 1 2 8 4 18
|
imasmulval |
|- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( F ` ( y .x. z ) ) ) |
| 76 |
75
|
3adant3r1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( F ` ( y .x. z ) ) ) |
| 77 |
76
|
oveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .x. z ) ) ) ) |
| 78 |
71 74 77
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) ) |
| 79 |
|
simp1 |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` x ) = u ) |
| 80 |
|
simp2 |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` y ) = v ) |
| 81 |
79 80
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( F ` y ) ) = ( u ( .r ` U ) v ) ) |
| 82 |
|
simp3 |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` z ) = w ) |
| 83 |
81 82
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( u ( .r ` U ) v ) ( .r ` U ) w ) ) |
| 84 |
80 82
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( v ( .r ` U ) w ) ) |
| 85 |
79 84
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) |
| 86 |
83 85
|
eqeq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) <-> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 87 |
78 86
|
syl5ibcom |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 88 |
87
|
3exp2 |
|- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) ) ) ) |
| 89 |
88
|
imp32 |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) ) |
| 90 |
89
|
rexlimdv |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 91 |
90
|
rexlimdvva |
|- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 92 |
46 91
|
sylbid |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 93 |
92
|
imp |
|- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( .r ` U ) v ) ( .r ` U ) w ) = ( u ( .r ` U ) ( v ( .r ` U ) w ) ) ) |
| 94 |
25 3 4
|
rngdi |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
| 95 |
47 51 54 57 94
|
syl13anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
| 96 |
95
|
fveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( x .x. ( y .+ z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
| 97 |
25 3
|
rngacl |
|- ( ( R e. Rng /\ u e. ( Base ` R ) /\ v e. ( Base ` R ) ) -> ( u .+ v ) e. ( Base ` R ) ) |
| 98 |
19 22 24 97
|
syl3anc |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .+ v ) e. ( Base ` R ) ) |
| 99 |
98 21
|
eleqtrrd |
|- ( ( ph /\ ( u e. V /\ v e. V ) ) -> ( u .+ v ) e. V ) |
| 100 |
99
|
caovclg |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 101 |
100
|
3adantr1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 102 |
5 7 1 2 8 4 18
|
imasmulval |
|- ( ( ph /\ x e. V /\ ( y .+ z ) e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .x. ( y .+ z ) ) ) ) |
| 103 |
61 66 101 102
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .x. ( y .+ z ) ) ) ) |
| 104 |
28
|
caovclg |
|- ( ( ph /\ ( x e. V /\ z e. V ) ) -> ( x .x. z ) e. V ) |
| 105 |
104
|
3adantr2 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .x. z ) e. V ) |
| 106 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 107 |
5 6 1 2 8 3 106
|
imasaddval |
|- ( ( ph /\ ( x .x. y ) e. V /\ ( x .x. z ) e. V ) -> ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
| 108 |
61 63 105 107
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) = ( F ` ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
| 109 |
96 103 108
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) = ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) ) |
| 110 |
5 6 1 2 8 3 106
|
imasaddval |
|- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 111 |
110
|
3adant3r1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 112 |
111
|
oveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( .r ` U ) ( F ` ( y .+ z ) ) ) ) |
| 113 |
5 7 1 2 8 4 18
|
imasmulval |
|- ( ( ph /\ x e. V /\ z e. V ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( F ` ( x .x. z ) ) ) |
| 114 |
113
|
3adant3r2 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( F ` ( x .x. z ) ) ) |
| 115 |
73 114
|
oveq12d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` ( x .x. y ) ) ( +g ` U ) ( F ` ( x .x. z ) ) ) ) |
| 116 |
109 112 115
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) ) |
| 117 |
80 82
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( v ( +g ` U ) w ) ) |
| 118 |
79 117
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( u ( .r ` U ) ( v ( +g ` U ) w ) ) ) |
| 119 |
79 82
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( .r ` U ) ( F ` z ) ) = ( u ( .r ` U ) w ) ) |
| 120 |
81 119
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) |
| 121 |
118 120
|
eqeq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` y ) ) ( +g ` U ) ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ) <-> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 122 |
116 121
|
syl5ibcom |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 123 |
122
|
3exp2 |
|- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) ) ) ) |
| 124 |
123
|
imp32 |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) ) |
| 125 |
124
|
rexlimdv |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 126 |
125
|
rexlimdvva |
|- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 127 |
46 126
|
sylbid |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) ) |
| 128 |
127
|
imp |
|- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( u ( .r ` U ) ( v ( +g ` U ) w ) ) = ( ( u ( .r ` U ) v ) ( +g ` U ) ( u ( .r ` U ) w ) ) ) |
| 129 |
25 3 4
|
rngdir |
|- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
| 130 |
47 51 54 57 129
|
syl13anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
| 131 |
130
|
fveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .x. z ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
| 132 |
99
|
caovclg |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
| 133 |
132
|
3adantr3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) e. V ) |
| 134 |
5 7 1 2 8 4 18
|
imasmulval |
|- ( ( ph /\ ( x .+ y ) e. V /\ z e. V ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .x. z ) ) ) |
| 135 |
61 133 55 134
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .x. z ) ) ) |
| 136 |
5 6 1 2 8 3 106
|
imasaddval |
|- ( ( ph /\ ( x .x. z ) e. V /\ ( y .x. z ) e. V ) -> ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
| 137 |
61 105 68 136
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) = ( F ` ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
| 138 |
131 135 137
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) ) |
| 139 |
5 6 1 2 8 3 106
|
imasaddval |
|- ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
| 140 |
139
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
| 141 |
140
|
oveq1d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( F ` ( x .+ y ) ) ( .r ` U ) ( F ` z ) ) ) |
| 142 |
114 76
|
oveq12d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( F ` ( x .x. z ) ) ( +g ` U ) ( F ` ( y .x. z ) ) ) ) |
| 143 |
138 141 142
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) ) |
| 144 |
79 80
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( u ( +g ` U ) v ) ) |
| 145 |
144 82
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( u ( +g ` U ) v ) ( .r ` U ) w ) ) |
| 146 |
119 84
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) |
| 147 |
145 146
|
eqeq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( .r ` U ) ( F ` z ) ) = ( ( ( F ` x ) ( .r ` U ) ( F ` z ) ) ( +g ` U ) ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) <-> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 148 |
143 147
|
syl5ibcom |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 149 |
148
|
3exp2 |
|- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) ) ) ) |
| 150 |
149
|
imp32 |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) ) |
| 151 |
150
|
rexlimdv |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 152 |
151
|
rexlimdvva |
|- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 153 |
46 152
|
sylbid |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) ) |
| 154 |
153
|
imp |
|- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( +g ` U ) v ) ( .r ` U ) w ) = ( ( u ( .r ` U ) w ) ( +g ` U ) ( v ( .r ` U ) w ) ) ) |
| 155 |
9 10 11 17 31 93 128 154
|
isrngd |
|- ( ph -> U e. Rng ) |