| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasbas.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasbas.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasbas.f |  |-  ( ph -> F : V -onto-> B ) | 
						
							| 4 |  | imasbas.r |  |-  ( ph -> R e. Z ) | 
						
							| 5 |  | imassca.g |  |-  G = ( Scalar ` R ) | 
						
							| 6 | 5 | fvexi |  |-  G e. _V | 
						
							| 7 |  | eqid |  |-  ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) | 
						
							| 8 | 7 | imasvalstr |  |-  ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) Struct <. 1 , ; 1 2 >. | 
						
							| 9 |  | scaid |  |-  Scalar = Slot ( Scalar ` ndx ) | 
						
							| 10 |  | snsstp1 |  |-  { <. ( Scalar ` ndx ) , G >. } C_ { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } | 
						
							| 11 |  | ssun2 |  |-  { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) | 
						
							| 12 | 10 11 | sstri |  |-  { <. ( Scalar ` ndx ) , G >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) | 
						
							| 13 |  | ssun1 |  |-  ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) | 
						
							| 14 | 12 13 | sstri |  |-  { <. ( Scalar ` ndx ) , G >. } C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) | 
						
							| 15 | 8 9 14 | strfv |  |-  ( G e. _V -> G = ( Scalar ` ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) ) ) | 
						
							| 16 | 6 15 | ax-mp |  |-  G = ( Scalar ` ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) ) | 
						
							| 17 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 18 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 19 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 20 |  | eqid |  |-  ( .s ` R ) = ( .s ` R ) | 
						
							| 21 |  | eqid |  |-  ( .i ` R ) = ( .i ` R ) | 
						
							| 22 |  | eqid |  |-  ( TopOpen ` R ) = ( TopOpen ` R ) | 
						
							| 23 |  | eqid |  |-  ( dist ` R ) = ( dist ` R ) | 
						
							| 24 |  | eqid |  |-  ( le ` R ) = ( le ` R ) | 
						
							| 25 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 26 | 1 2 3 4 17 25 | imasplusg |  |-  ( ph -> ( +g ` U ) = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } ) | 
						
							| 27 |  | eqid |  |-  ( .r ` U ) = ( .r ` U ) | 
						
							| 28 | 1 2 3 4 18 27 | imasmulr |  |-  ( ph -> ( .r ` U ) = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } ) | 
						
							| 29 |  | eqidd |  |-  ( ph -> U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) = U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) ) | 
						
							| 30 |  | eqidd |  |-  ( ph -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } ) | 
						
							| 31 |  | eqidd |  |-  ( ph -> ( ( TopOpen ` R ) qTop F ) = ( ( TopOpen ` R ) qTop F ) ) | 
						
							| 32 |  | eqid |  |-  ( dist ` U ) = ( dist ` U ) | 
						
							| 33 | 1 2 3 4 23 32 | imasds |  |-  ( ph -> ( dist ` U ) = ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` R ) o. g ) ) ) , RR* , < ) ) ) | 
						
							| 34 |  | eqidd |  |-  ( ph -> ( ( F o. ( le ` R ) ) o. `' F ) = ( ( F o. ( le ` R ) ) o. `' F ) ) | 
						
							| 35 | 1 2 17 18 5 19 20 21 22 23 24 26 28 29 30 31 33 34 3 4 | imasval |  |-  ( ph -> U = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) ) | 
						
							| 36 | 35 | fveq2d |  |-  ( ph -> ( Scalar ` U ) = ( Scalar ` ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , G >. , <. ( .s ` ndx ) , U_ q e. V ( p e. ( Base ` G ) , x e. { ( F ` q ) } |-> ( F ` ( p ( .s ` R ) q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) ) ) | 
						
							| 37 | 16 36 | eqtr4id |  |-  ( ph -> G = ( Scalar ` U ) ) |