Description: The image of a class is a subset of its range. Theorem 3.16(xi) of Monk1 p. 39. (Contributed by NM, 31-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imassrn | |- ( A " B ) C_ ran A | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exsimpr | |- ( E. x ( x e. B /\ <. x , y >. e. A ) -> E. x <. x , y >. e. A ) | |
| 2 | 1 | ss2abi |  |-  { y | E. x ( x e. B /\ <. x , y >. e. A ) } C_ { y | E. x <. x , y >. e. A } | 
| 3 | dfima3 |  |-  ( A " B ) = { y | E. x ( x e. B /\ <. x , y >. e. A ) } | |
| 4 | dfrn3 |  |-  ran A = { y | E. x <. x , y >. e. A } | |
| 5 | 2 3 4 | 3sstr4i | |- ( A " B ) C_ ran A |