Metamath Proof Explorer


Theorem imastopn

Description: The topology of an image structure. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses imastps.u
|- ( ph -> U = ( F "s R ) )
imastps.v
|- ( ph -> V = ( Base ` R ) )
imastps.f
|- ( ph -> F : V -onto-> B )
imastopn.r
|- ( ph -> R e. W )
imastopn.j
|- J = ( TopOpen ` R )
imastopn.o
|- O = ( TopOpen ` U )
Assertion imastopn
|- ( ph -> O = ( J qTop F ) )

Proof

Step Hyp Ref Expression
1 imastps.u
 |-  ( ph -> U = ( F "s R ) )
2 imastps.v
 |-  ( ph -> V = ( Base ` R ) )
3 imastps.f
 |-  ( ph -> F : V -onto-> B )
4 imastopn.r
 |-  ( ph -> R e. W )
5 imastopn.j
 |-  J = ( TopOpen ` R )
6 imastopn.o
 |-  O = ( TopOpen ` U )
7 eqid
 |-  ( TopSet ` U ) = ( TopSet ` U )
8 1 2 3 4 5 7 imastset
 |-  ( ph -> ( TopSet ` U ) = ( J qTop F ) )
9 5 fvexi
 |-  J e. _V
10 fofn
 |-  ( F : V -onto-> B -> F Fn V )
11 3 10 syl
 |-  ( ph -> F Fn V )
12 fvex
 |-  ( Base ` R ) e. _V
13 2 12 eqeltrdi
 |-  ( ph -> V e. _V )
14 fnex
 |-  ( ( F Fn V /\ V e. _V ) -> F e. _V )
15 11 13 14 syl2anc
 |-  ( ph -> F e. _V )
16 eqid
 |-  U. J = U. J
17 16 qtopval
 |-  ( ( J e. _V /\ F e. _V ) -> ( J qTop F ) = { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } )
18 9 15 17 sylancr
 |-  ( ph -> ( J qTop F ) = { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } )
19 8 18 eqtrd
 |-  ( ph -> ( TopSet ` U ) = { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } )
20 ssrab2
 |-  { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } C_ ~P ( F " U. J )
21 imassrn
 |-  ( F " U. J ) C_ ran F
22 forn
 |-  ( F : V -onto-> B -> ran F = B )
23 3 22 syl
 |-  ( ph -> ran F = B )
24 1 2 3 4 imasbas
 |-  ( ph -> B = ( Base ` U ) )
25 23 24 eqtrd
 |-  ( ph -> ran F = ( Base ` U ) )
26 21 25 sseqtrid
 |-  ( ph -> ( F " U. J ) C_ ( Base ` U ) )
27 26 sspwd
 |-  ( ph -> ~P ( F " U. J ) C_ ~P ( Base ` U ) )
28 20 27 sstrid
 |-  ( ph -> { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } C_ ~P ( Base ` U ) )
29 19 28 eqsstrd
 |-  ( ph -> ( TopSet ` U ) C_ ~P ( Base ` U ) )
30 eqid
 |-  ( Base ` U ) = ( Base ` U )
31 30 7 topnid
 |-  ( ( TopSet ` U ) C_ ~P ( Base ` U ) -> ( TopSet ` U ) = ( TopOpen ` U ) )
32 29 31 syl
 |-  ( ph -> ( TopSet ` U ) = ( TopOpen ` U ) )
33 32 6 eqtr4di
 |-  ( ph -> ( TopSet ` U ) = O )
34 33 8 eqtr3d
 |-  ( ph -> O = ( J qTop F ) )