| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imastps.u |
|- ( ph -> U = ( F "s R ) ) |
| 2 |
|
imastps.v |
|- ( ph -> V = ( Base ` R ) ) |
| 3 |
|
imastps.f |
|- ( ph -> F : V -onto-> B ) |
| 4 |
|
imastopn.r |
|- ( ph -> R e. W ) |
| 5 |
|
imastopn.j |
|- J = ( TopOpen ` R ) |
| 6 |
|
imastopn.o |
|- O = ( TopOpen ` U ) |
| 7 |
|
eqid |
|- ( TopSet ` U ) = ( TopSet ` U ) |
| 8 |
1 2 3 4 5 7
|
imastset |
|- ( ph -> ( TopSet ` U ) = ( J qTop F ) ) |
| 9 |
5
|
fvexi |
|- J e. _V |
| 10 |
|
fofn |
|- ( F : V -onto-> B -> F Fn V ) |
| 11 |
3 10
|
syl |
|- ( ph -> F Fn V ) |
| 12 |
|
fvex |
|- ( Base ` R ) e. _V |
| 13 |
2 12
|
eqeltrdi |
|- ( ph -> V e. _V ) |
| 14 |
|
fnex |
|- ( ( F Fn V /\ V e. _V ) -> F e. _V ) |
| 15 |
11 13 14
|
syl2anc |
|- ( ph -> F e. _V ) |
| 16 |
|
eqid |
|- U. J = U. J |
| 17 |
16
|
qtopval |
|- ( ( J e. _V /\ F e. _V ) -> ( J qTop F ) = { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } ) |
| 18 |
9 15 17
|
sylancr |
|- ( ph -> ( J qTop F ) = { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } ) |
| 19 |
8 18
|
eqtrd |
|- ( ph -> ( TopSet ` U ) = { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } ) |
| 20 |
|
ssrab2 |
|- { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } C_ ~P ( F " U. J ) |
| 21 |
|
imassrn |
|- ( F " U. J ) C_ ran F |
| 22 |
|
forn |
|- ( F : V -onto-> B -> ran F = B ) |
| 23 |
3 22
|
syl |
|- ( ph -> ran F = B ) |
| 24 |
1 2 3 4
|
imasbas |
|- ( ph -> B = ( Base ` U ) ) |
| 25 |
23 24
|
eqtrd |
|- ( ph -> ran F = ( Base ` U ) ) |
| 26 |
21 25
|
sseqtrid |
|- ( ph -> ( F " U. J ) C_ ( Base ` U ) ) |
| 27 |
26
|
sspwd |
|- ( ph -> ~P ( F " U. J ) C_ ~P ( Base ` U ) ) |
| 28 |
20 27
|
sstrid |
|- ( ph -> { x e. ~P ( F " U. J ) | ( ( `' F " x ) i^i U. J ) e. J } C_ ~P ( Base ` U ) ) |
| 29 |
19 28
|
eqsstrd |
|- ( ph -> ( TopSet ` U ) C_ ~P ( Base ` U ) ) |
| 30 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 31 |
30 7
|
topnid |
|- ( ( TopSet ` U ) C_ ~P ( Base ` U ) -> ( TopSet ` U ) = ( TopOpen ` U ) ) |
| 32 |
29 31
|
syl |
|- ( ph -> ( TopSet ` U ) = ( TopOpen ` U ) ) |
| 33 |
32 6
|
eqtr4di |
|- ( ph -> ( TopSet ` U ) = O ) |
| 34 |
33 8
|
eqtr3d |
|- ( ph -> O = ( J qTop F ) ) |