Step |
Hyp |
Ref |
Expression |
1 |
|
imastps.u |
|- ( ph -> U = ( F "s R ) ) |
2 |
|
imastps.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
imastps.f |
|- ( ph -> F : V -onto-> B ) |
4 |
|
imastps.r |
|- ( ph -> R e. TopSp ) |
5 |
|
eqid |
|- ( TopOpen ` R ) = ( TopOpen ` R ) |
6 |
|
eqid |
|- ( TopOpen ` U ) = ( TopOpen ` U ) |
7 |
1 2 3 4 5 6
|
imastopn |
|- ( ph -> ( TopOpen ` U ) = ( ( TopOpen ` R ) qTop F ) ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
8 5
|
istps |
|- ( R e. TopSp <-> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
10 |
4 9
|
sylib |
|- ( ph -> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
11 |
2
|
fveq2d |
|- ( ph -> ( TopOn ` V ) = ( TopOn ` ( Base ` R ) ) ) |
12 |
10 11
|
eleqtrrd |
|- ( ph -> ( TopOpen ` R ) e. ( TopOn ` V ) ) |
13 |
|
qtoptopon |
|- ( ( ( TopOpen ` R ) e. ( TopOn ` V ) /\ F : V -onto-> B ) -> ( ( TopOpen ` R ) qTop F ) e. ( TopOn ` B ) ) |
14 |
12 3 13
|
syl2anc |
|- ( ph -> ( ( TopOpen ` R ) qTop F ) e. ( TopOn ` B ) ) |
15 |
1 2 3 4
|
imasbas |
|- ( ph -> B = ( Base ` U ) ) |
16 |
15
|
fveq2d |
|- ( ph -> ( TopOn ` B ) = ( TopOn ` ( Base ` U ) ) ) |
17 |
14 16
|
eleqtrd |
|- ( ph -> ( ( TopOpen ` R ) qTop F ) e. ( TopOn ` ( Base ` U ) ) ) |
18 |
7 17
|
eqeltrd |
|- ( ph -> ( TopOpen ` U ) e. ( TopOn ` ( Base ` U ) ) ) |
19 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
20 |
19 6
|
istps |
|- ( U e. TopSp <-> ( TopOpen ` U ) e. ( TopOn ` ( Base ` U ) ) ) |
21 |
18 20
|
sylibr |
|- ( ph -> U e. TopSp ) |