| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imasbas.u |  |-  ( ph -> U = ( F "s R ) ) | 
						
							| 2 |  | imasbas.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | imasbas.f |  |-  ( ph -> F : V -onto-> B ) | 
						
							| 4 |  | imasbas.r |  |-  ( ph -> R e. Z ) | 
						
							| 5 |  | imassca.g |  |-  G = ( Scalar ` R ) | 
						
							| 6 |  | imasvsca.k |  |-  K = ( Base ` G ) | 
						
							| 7 |  | imasvsca.q |  |-  .x. = ( .s ` R ) | 
						
							| 8 |  | imasvsca.s |  |-  .xb = ( .s ` U ) | 
						
							| 9 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 10 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 11 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 12 | 5 | fveq2i |  |-  ( Base ` G ) = ( Base ` ( Scalar ` R ) ) | 
						
							| 13 | 6 12 | eqtri |  |-  K = ( Base ` ( Scalar ` R ) ) | 
						
							| 14 |  | eqid |  |-  ( .i ` R ) = ( .i ` R ) | 
						
							| 15 |  | eqid |  |-  ( TopOpen ` R ) = ( TopOpen ` R ) | 
						
							| 16 |  | eqid |  |-  ( dist ` R ) = ( dist ` R ) | 
						
							| 17 |  | eqid |  |-  ( le ` R ) = ( le ` R ) | 
						
							| 18 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 19 | 1 2 3 4 9 18 | imasplusg |  |-  ( ph -> ( +g ` U ) = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( +g ` R ) q ) ) >. } ) | 
						
							| 20 |  | eqid |  |-  ( .r ` U ) = ( .r ` U ) | 
						
							| 21 | 1 2 3 4 10 20 | imasmulr |  |-  ( ph -> ( .r ` U ) = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p ( .r ` R ) q ) ) >. } ) | 
						
							| 22 |  | eqidd |  |-  ( ph -> U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) = U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) ) | 
						
							| 23 |  | eqidd |  |-  ( ph -> U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } ) | 
						
							| 24 |  | eqidd |  |-  ( ph -> ( ( TopOpen ` R ) qTop F ) = ( ( TopOpen ` R ) qTop F ) ) | 
						
							| 25 |  | eqid |  |-  ( dist ` U ) = ( dist ` U ) | 
						
							| 26 | 1 2 3 4 16 25 | imasds |  |-  ( ph -> ( dist ` U ) = ( x e. B , y e. B |-> inf ( U_ u e. NN ran ( z e. { w e. ( ( V X. V ) ^m ( 1 ... u ) ) | ( ( F ` ( 1st ` ( w ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( w ` u ) ) ) = y /\ A. v e. ( 1 ... ( u - 1 ) ) ( F ` ( 2nd ` ( w ` v ) ) ) = ( F ` ( 1st ` ( w ` ( v + 1 ) ) ) ) ) } |-> ( RR*s gsum ( ( dist ` R ) o. z ) ) ) , RR* , < ) ) ) | 
						
							| 27 |  | eqidd |  |-  ( ph -> ( ( F o. ( le ` R ) ) o. `' F ) = ( ( F o. ( le ` R ) ) o. `' F ) ) | 
						
							| 28 | 1 2 9 10 11 13 7 14 15 16 17 19 21 22 23 24 26 27 3 4 | imasval |  |-  ( ph -> U = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) ) | 
						
							| 29 |  | eqid |  |-  ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) | 
						
							| 30 | 29 | imasvalstr |  |-  ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) Struct <. 1 , ; 1 2 >. | 
						
							| 31 |  | vscaid |  |-  .s = Slot ( .s ` ndx ) | 
						
							| 32 |  | snsstp2 |  |-  { <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. } C_ { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } | 
						
							| 33 |  | ssun2 |  |-  { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) | 
						
							| 34 |  | ssun1 |  |-  ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) | 
						
							| 35 | 33 34 | sstri |  |-  { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) | 
						
							| 36 | 32 35 | sstri |  |-  { <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. } C_ ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , ( +g ` U ) >. , <. ( .r ` ndx ) , ( .r ` U ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` R ) >. , <. ( .s ` ndx ) , U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) >. , <. ( .i ` ndx ) , U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( p ( .i ` R ) q ) >. } >. } ) u. { <. ( TopSet ` ndx ) , ( ( TopOpen ` R ) qTop F ) >. , <. ( le ` ndx ) , ( ( F o. ( le ` R ) ) o. `' F ) >. , <. ( dist ` ndx ) , ( dist ` U ) >. } ) | 
						
							| 37 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 38 | 2 37 | eqeltrdi |  |-  ( ph -> V e. _V ) | 
						
							| 39 | 6 | fvexi |  |-  K e. _V | 
						
							| 40 |  | snex |  |-  { ( F ` q ) } e. _V | 
						
							| 41 | 39 40 | mpoex |  |-  ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) e. _V | 
						
							| 42 | 41 | rgenw |  |-  A. q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) e. _V | 
						
							| 43 |  | iunexg |  |-  ( ( V e. _V /\ A. q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) e. _V ) -> U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) e. _V ) | 
						
							| 44 | 38 42 43 | sylancl |  |-  ( ph -> U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) e. _V ) | 
						
							| 45 | 28 30 31 36 44 8 | strfv3 |  |-  ( ph -> .xb = U_ q e. V ( p e. K , x e. { ( F ` q ) } |-> ( F ` ( p .x. q ) ) ) ) |