| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ima |
|- ( ( A u. B ) " C ) = ran ( ( A u. B ) |` C ) |
| 2 |
|
resundir |
|- ( ( A u. B ) |` C ) = ( ( A |` C ) u. ( B |` C ) ) |
| 3 |
2
|
rneqi |
|- ran ( ( A u. B ) |` C ) = ran ( ( A |` C ) u. ( B |` C ) ) |
| 4 |
|
rnun |
|- ran ( ( A |` C ) u. ( B |` C ) ) = ( ran ( A |` C ) u. ran ( B |` C ) ) |
| 5 |
1 3 4
|
3eqtri |
|- ( ( A u. B ) " C ) = ( ran ( A |` C ) u. ran ( B |` C ) ) |
| 6 |
|
df-ima |
|- ( A " C ) = ran ( A |` C ) |
| 7 |
|
df-ima |
|- ( B " C ) = ran ( B |` C ) |
| 8 |
6 7
|
uneq12i |
|- ( ( A " C ) u. ( B " C ) ) = ( ran ( A |` C ) u. ran ( B |` C ) ) |
| 9 |
5 8
|
eqtr4i |
|- ( ( A u. B ) " C ) = ( ( A " C ) u. ( B " C ) ) |