Metamath Proof Explorer


Theorem imauni

Description: The image of a union is the indexed union of the images. Theorem 3K(a) of Enderton p. 50. (Contributed by NM, 9-Aug-2004) (Proof shortened by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion imauni
|- ( A " U. B ) = U_ x e. B ( A " x )

Proof

Step Hyp Ref Expression
1 uniiun
 |-  U. B = U_ x e. B x
2 1 imaeq2i
 |-  ( A " U. B ) = ( A " U_ x e. B x )
3 imaiun
 |-  ( A " U_ x e. B x ) = U_ x e. B ( A " x )
4 2 3 eqtri
 |-  ( A " U. B ) = U_ x e. B ( A " x )