Metamath Proof Explorer


Theorem imbi12

Description: Closed form of imbi12i . Was automatically derived from its "Virtual Deduction" version and the Metamath program "MM-PA> MINIMIZE__WITH *" command. (Contributed by Alan Sare, 18-Mar-2012)

Ref Expression
Assertion imbi12
|- ( ( ph <-> ps ) -> ( ( ch <-> th ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) )

Proof

Step Hyp Ref Expression
1 simplim
 |-  ( -. ( ( ph <-> ps ) -> -. ( ch <-> th ) ) -> ( ph <-> ps ) )
2 simprim
 |-  ( -. ( ( ph <-> ps ) -> -. ( ch <-> th ) ) -> ( ch <-> th ) )
3 1 2 imbi12d
 |-  ( -. ( ( ph <-> ps ) -> -. ( ch <-> th ) ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) )
4 3 expi
 |-  ( ( ph <-> ps ) -> ( ( ch <-> th ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) )