| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn2 |
|- (. ( ph <-> ps ) ,. ( ch <-> th ) ->. ( ch <-> th ) ). |
| 2 |
|
idn1 |
|- (. ( ph <-> ps ) ->. ( ph <-> ps ) ). |
| 3 |
|
idn3 |
|- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ph -> ch ) ->. ( ph -> ch ) ). |
| 4 |
|
biimpr |
|- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
| 5 |
4
|
imim1d |
|- ( ( ph <-> ps ) -> ( ( ph -> ch ) -> ( ps -> ch ) ) ) |
| 6 |
2 3 5
|
e13 |
|- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ph -> ch ) ->. ( ps -> ch ) ). |
| 7 |
|
biimp |
|- ( ( ch <-> th ) -> ( ch -> th ) ) |
| 8 |
7
|
imim2d |
|- ( ( ch <-> th ) -> ( ( ps -> ch ) -> ( ps -> th ) ) ) |
| 9 |
1 6 8
|
e23 |
|- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ph -> ch ) ->. ( ps -> th ) ). |
| 10 |
9
|
in3 |
|- (. ( ph <-> ps ) ,. ( ch <-> th ) ->. ( ( ph -> ch ) -> ( ps -> th ) ) ). |
| 11 |
|
idn3 |
|- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ps -> th ) ->. ( ps -> th ) ). |
| 12 |
|
biimp |
|- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
| 13 |
12
|
imim1d |
|- ( ( ph <-> ps ) -> ( ( ps -> th ) -> ( ph -> th ) ) ) |
| 14 |
2 11 13
|
e13 |
|- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ps -> th ) ->. ( ph -> th ) ). |
| 15 |
|
biimpr |
|- ( ( ch <-> th ) -> ( th -> ch ) ) |
| 16 |
15
|
imim2d |
|- ( ( ch <-> th ) -> ( ( ph -> th ) -> ( ph -> ch ) ) ) |
| 17 |
1 14 16
|
e23 |
|- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ps -> th ) ->. ( ph -> ch ) ). |
| 18 |
17
|
in3 |
|- (. ( ph <-> ps ) ,. ( ch <-> th ) ->. ( ( ps -> th ) -> ( ph -> ch ) ) ). |
| 19 |
|
impbi |
|- ( ( ( ph -> ch ) -> ( ps -> th ) ) -> ( ( ( ps -> th ) -> ( ph -> ch ) ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) ) |
| 20 |
10 18 19
|
e22 |
|- (. ( ph <-> ps ) ,. ( ch <-> th ) ->. ( ( ph -> ch ) <-> ( ps -> th ) ) ). |
| 21 |
20
|
in2 |
|- (. ( ph <-> ps ) ->. ( ( ch <-> th ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) ). |
| 22 |
21
|
in1 |
|- ( ( ph <-> ps ) -> ( ( ch <-> th ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) ) |