Metamath Proof Explorer


Theorem imbi12i

Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993)

Ref Expression
Hypotheses imbi12i.1
|- ( ph <-> ps )
imbi12i.2
|- ( ch <-> th )
Assertion imbi12i
|- ( ( ph -> ch ) <-> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 imbi12i.1
 |-  ( ph <-> ps )
2 imbi12i.2
 |-  ( ch <-> th )
3 imbi12
 |-  ( ( ph <-> ps ) -> ( ( ch <-> th ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) )
4 1 2 3 mp2
 |-  ( ( ph -> ch ) <-> ( ps -> th ) )