Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imbi12i.1 | |- ( ph <-> ps ) |
|
| imbi12i.2 | |- ( ch <-> th ) |
||
| Assertion | imbi12i | |- ( ( ph -> ch ) <-> ( ps -> th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.1 | |- ( ph <-> ps ) |
|
| 2 | imbi12i.2 | |- ( ch <-> th ) |
|
| 3 | imbi12 | |- ( ( ph <-> ps ) -> ( ( ch <-> th ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) ) |
|
| 4 | 1 2 3 | mp2 | |- ( ( ph -> ch ) <-> ( ps -> th ) ) |