Metamath Proof Explorer


Theorem imbi1i

Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 17-Sep-2013)

Ref Expression
Hypothesis imbi1i.1
|- ( ph <-> ps )
Assertion imbi1i
|- ( ( ph -> ch ) <-> ( ps -> ch ) )

Proof

Step Hyp Ref Expression
1 imbi1i.1
 |-  ( ph <-> ps )
2 imbi1
 |-  ( ( ph <-> ps ) -> ( ( ph -> ch ) <-> ( ps -> ch ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ch ) <-> ( ps -> ch ) )