Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 17-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imbi1i.1 | |- ( ph <-> ps ) |
|
| Assertion | imbi1i | |- ( ( ph -> ch ) <-> ( ps -> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi1i.1 | |- ( ph <-> ps ) |
|
| 2 | imbi1 | |- ( ( ph <-> ps ) -> ( ( ph -> ch ) <-> ( ps -> ch ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( ph -> ch ) <-> ( ps -> ch ) ) |