Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 17-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imbi1i.1 | |- ( ph <-> ps ) |
|
Assertion | imbi1i | |- ( ( ph -> ch ) <-> ( ps -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1i.1 | |- ( ph <-> ps ) |
|
2 | imbi1 | |- ( ( ph <-> ps ) -> ( ( ph -> ch ) <-> ( ps -> ch ) ) ) |
|
3 | 1 2 | ax-mp | |- ( ( ph -> ch ) <-> ( ps -> ch ) ) |