Metamath Proof Explorer


Theorem imcl

Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion imcl
|- ( A e. CC -> ( Im ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 imre
 |-  ( A e. CC -> ( Im ` A ) = ( Re ` ( -u _i x. A ) ) )
2 negicn
 |-  -u _i e. CC
3 mulcl
 |-  ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC )
4 2 3 mpan
 |-  ( A e. CC -> ( -u _i x. A ) e. CC )
5 recl
 |-  ( ( -u _i x. A ) e. CC -> ( Re ` ( -u _i x. A ) ) e. RR )
6 4 5 syl
 |-  ( A e. CC -> ( Re ` ( -u _i x. A ) ) e. RR )
7 1 6 eqeltrd
 |-  ( A e. CC -> ( Im ` A ) e. RR )