Metamath Proof Explorer


Theorem imcld

Description: The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis recld.1
|- ( ph -> A e. CC )
Assertion imcld
|- ( ph -> ( Im ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 recld.1
 |-  ( ph -> A e. CC )
2 imcl
 |-  ( A e. CC -> ( Im ` A ) e. RR )
3 1 2 syl
 |-  ( ph -> ( Im ` A ) e. RR )