Description: Distribution of implication with conjunction. (Contributed by NM, 31-May-1999) (Proof shortened by Wolf Lammen, 6-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imdistan | |- ( ( ph -> ( ps -> ch ) ) <-> ( ( ph /\ ps ) -> ( ph /\ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.42 | |- ( ( ph -> ( ps -> ch ) ) <-> ( ph -> ( ps -> ( ph /\ ch ) ) ) ) |
|
| 2 | impexp | |- ( ( ( ph /\ ps ) -> ( ph /\ ch ) ) <-> ( ph -> ( ps -> ( ph /\ ch ) ) ) ) |
|
| 3 | 1 2 | bitr4i | |- ( ( ph -> ( ps -> ch ) ) <-> ( ( ph /\ ps ) -> ( ph /\ ch ) ) ) |