Description: Distribution of implication with conjunction (deduction version with conjoined antecedent). (Contributed by Jeff Madsen, 19-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imdistanda.1 | |- ( ( ph /\ ps ) -> ( ch -> th ) ) |
|
Assertion | imdistanda | |- ( ph -> ( ( ps /\ ch ) -> ( ps /\ th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanda.1 | |- ( ( ph /\ ps ) -> ( ch -> th ) ) |
|
2 | 1 | ex | |- ( ph -> ( ps -> ( ch -> th ) ) ) |
3 | 2 | imdistand | |- ( ph -> ( ( ps /\ ch ) -> ( ps /\ th ) ) ) |