Description: Imaginary part of a division. Related to remul2 . (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crred.1 | |- ( ph -> A e. RR ) |
|
| remul2d.2 | |- ( ph -> B e. CC ) |
||
| redivd.2 | |- ( ph -> A =/= 0 ) |
||
| Assertion | imdivd | |- ( ph -> ( Im ` ( B / A ) ) = ( ( Im ` B ) / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crred.1 | |- ( ph -> A e. RR ) |
|
| 2 | remul2d.2 | |- ( ph -> B e. CC ) |
|
| 3 | redivd.2 | |- ( ph -> A =/= 0 ) |
|
| 4 | imdiv | |- ( ( B e. CC /\ A e. RR /\ A =/= 0 ) -> ( Im ` ( B / A ) ) = ( ( Im ` B ) / A ) ) |
|
| 5 | 2 1 3 4 | syl3anc | |- ( ph -> ( Im ` ( B / A ) ) = ( ( Im ` B ) / A ) ) |