Metamath Proof Explorer


Theorem imf

Description: Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion imf
|- Im : CC --> RR

Proof

Step Hyp Ref Expression
1 df-im
 |-  Im = ( x e. CC |-> ( Re ` ( x / _i ) ) )
2 imval
 |-  ( x e. CC -> ( Im ` x ) = ( Re ` ( x / _i ) ) )
3 imcl
 |-  ( x e. CC -> ( Im ` x ) e. RR )
4 2 3 eqeltrrd
 |-  ( x e. CC -> ( Re ` ( x / _i ) ) e. RR )
5 1 4 fmpti
 |-  Im : CC --> RR