Metamath Proof Explorer


Theorem imimorb

Description: Simplify an implication between implications. (Contributed by Paul Chapman, 17-Nov-2012) (Proof shortened by Wolf Lammen, 3-Apr-2013)

Ref Expression
Assertion imimorb
|- ( ( ( ps -> ch ) -> ( ph -> ch ) ) <-> ( ph -> ( ps \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 bi2.04
 |-  ( ( ( ps -> ch ) -> ( ph -> ch ) ) <-> ( ph -> ( ( ps -> ch ) -> ch ) ) )
2 dfor2
 |-  ( ( ps \/ ch ) <-> ( ( ps -> ch ) -> ch ) )
3 2 imbi2i
 |-  ( ( ph -> ( ps \/ ch ) ) <-> ( ph -> ( ( ps -> ch ) -> ch ) ) )
4 1 3 bitr4i
 |-  ( ( ( ps -> ch ) -> ( ph -> ch ) ) <-> ( ph -> ( ps \/ ch ) ) )