Description: Simplify an implication between implications. (Contributed by Paul Chapman, 17-Nov-2012) (Proof shortened by Wolf Lammen, 3-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | imimorb | |- ( ( ( ps -> ch ) -> ( ph -> ch ) ) <-> ( ph -> ( ps \/ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 | |- ( ( ( ps -> ch ) -> ( ph -> ch ) ) <-> ( ph -> ( ( ps -> ch ) -> ch ) ) ) |
|
2 | dfor2 | |- ( ( ps \/ ch ) <-> ( ( ps -> ch ) -> ch ) ) |
|
3 | 2 | imbi2i | |- ( ( ph -> ( ps \/ ch ) ) <-> ( ph -> ( ( ps -> ch ) -> ch ) ) ) |
4 | 1 3 | bitr4i | |- ( ( ( ps -> ch ) -> ( ph -> ch ) ) <-> ( ph -> ( ps \/ ch ) ) ) |