Description: Express an implication in terms of a negated conjunction. (Contributed by NM, 9-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imnan | |- ( ( ph -> -. ps ) <-> -. ( ph /\ ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-an | |- ( ( ph /\ ps ) <-> -. ( ph -> -. ps ) ) |
|
| 2 | 1 | con2bii | |- ( ( ph -> -. ps ) <-> -. ( ph /\ ps ) ) |