Description: An -> nand relation. (Contributed by Anthony Hart, 2-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | imnand2 | |- ( ( -. ph -> ps ) <-> ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nannot | |- ( -. ph <-> ( ph -/\ ph ) ) |
|
2 | nannot | |- ( -. ps <-> ( ps -/\ ps ) ) |
|
3 | 1 2 | anbi12i | |- ( ( -. ph /\ -. ps ) <-> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) |
4 | 3 | notbii | |- ( -. ( -. ph /\ -. ps ) <-> -. ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) |
5 | iman | |- ( ( -. ph -> ps ) <-> -. ( -. ph /\ -. ps ) ) |
|
6 | df-nan | |- ( ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) <-> -. ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) |
|
7 | 4 5 6 | 3bitr4i | |- ( ( -. ph -> ps ) <-> ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) ) |