Description: An -> nand relation. (Contributed by Anthony Hart, 2-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imnand2 | |- ( ( -. ph -> ps ) <-> ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nannot | |- ( -. ph <-> ( ph -/\ ph ) ) |
|
| 2 | nannot | |- ( -. ps <-> ( ps -/\ ps ) ) |
|
| 3 | 1 2 | anbi12i | |- ( ( -. ph /\ -. ps ) <-> ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) |
| 4 | 3 | notbii | |- ( -. ( -. ph /\ -. ps ) <-> -. ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) |
| 5 | iman | |- ( ( -. ph -> ps ) <-> -. ( -. ph /\ -. ps ) ) |
|
| 6 | df-nan | |- ( ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) <-> -. ( ( ph -/\ ph ) /\ ( ps -/\ ps ) ) ) |
|
| 7 | 4 5 6 | 3bitr4i | |- ( ( -. ph -> ps ) <-> ( ( ph -/\ ph ) -/\ ( ps -/\ ps ) ) ) |