Metamath Proof Explorer


Theorem imori

Description: Infer disjunction from implication. (Contributed by NM, 12-Mar-2012)

Ref Expression
Hypothesis imori.1
|- ( ph -> ps )
Assertion imori
|- ( -. ph \/ ps )

Proof

Step Hyp Ref Expression
1 imori.1
 |-  ( ph -> ps )
2 imor
 |-  ( ( ph -> ps ) <-> ( -. ph \/ ps ) )
3 1 2 mpbi
 |-  ( -. ph \/ ps )