Description: Importation inference. (Contributed by NM, 3-Jan-1993) (Proof shortened by Eric Schmidt, 22-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imp.1 | |- ( ph -> ( ps -> ch ) ) |
|
| Assertion | imp | |- ( ( ph /\ ps ) -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp.1 | |- ( ph -> ( ps -> ch ) ) |
|
| 2 | df-an | |- ( ( ph /\ ps ) <-> -. ( ph -> -. ps ) ) |
|
| 3 | 1 | impi | |- ( -. ( ph -> -. ps ) -> ch ) |
| 4 | 2 3 | sylbi | |- ( ( ph /\ ps ) -> ch ) |