Description: An importation inference. (Contributed by NM, 26-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imp4.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )  | 
					|
| Assertion | imp45 | |- ( ( ph /\ ( ps /\ ( ch /\ th ) ) ) -> ta )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imp4.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )  | 
						|
| 2 | 1 | imp4d | |- ( ph -> ( ( ps /\ ( ch /\ th ) ) -> ta ) )  | 
						
| 3 | 2 | imp | |- ( ( ph /\ ( ps /\ ( ch /\ th ) ) ) -> ta )  |