Description: An importation inference. (Contributed by NM, 26-Apr-1994) (Proof shortened by Wolf Lammen, 19-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imp4.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) ) |
|
Assertion | imp4a | |- ( ph -> ( ps -> ( ( ch /\ th ) -> ta ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) ) |
|
2 | 1 | imp4b | |- ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ta ) ) |
3 | 2 | ex | |- ( ph -> ( ps -> ( ( ch /\ th ) -> ta ) ) ) |