Metamath Proof Explorer


Theorem imp4a

Description: An importation inference. (Contributed by NM, 26-Apr-1994) (Proof shortened by Wolf Lammen, 19-Jul-2021)

Ref Expression
Hypothesis imp4.1
|- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
Assertion imp4a
|- ( ph -> ( ps -> ( ( ch /\ th ) -> ta ) ) )

Proof

Step Hyp Ref Expression
1 imp4.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
2 1 imp4b
 |-  ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ta ) )
3 2 ex
 |-  ( ph -> ( ps -> ( ( ch /\ th ) -> ta ) ) )