Metamath Proof Explorer


Theorem imp4b

Description: An importation inference. (Contributed by NM, 26-Apr-1994) Shorten imp4a . (Revised by Wolf Lammen, 19-Jul-2021)

Ref Expression
Hypothesis imp4.1
|- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
Assertion imp4b
|- ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ta ) )

Proof

Step Hyp Ref Expression
1 imp4.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
2 1 imp
 |-  ( ( ph /\ ps ) -> ( ch -> ( th -> ta ) ) )
3 2 impd
 |-  ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ta ) )