Description: An importation inference. (Contributed by NM, 26-Apr-1994) Shorten imp4a . (Revised by Wolf Lammen, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imp4.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) ) |
|
| Assertion | imp4b | |- ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ta ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp4.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) ) |
|
| 2 | 1 | imp | |- ( ( ph /\ ps ) -> ( ch -> ( th -> ta ) ) ) |
| 3 | 2 | impd | |- ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ta ) ) |