Metamath Proof Explorer


Theorem imp4c

Description: An importation inference. (Contributed by NM, 26-Apr-1994)

Ref Expression
Hypothesis imp4.1
|- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
Assertion imp4c
|- ( ph -> ( ( ( ps /\ ch ) /\ th ) -> ta ) )

Proof

Step Hyp Ref Expression
1 imp4.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
2 1 impd
 |-  ( ph -> ( ( ps /\ ch ) -> ( th -> ta ) ) )
3 2 impd
 |-  ( ph -> ( ( ( ps /\ ch ) /\ th ) -> ta ) )