Metamath Proof Explorer


Theorem imp511

Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009)

Ref Expression
Hypothesis imp5.1
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
Assertion imp511
|- ( ( ph /\ ( ( ps /\ ( ch /\ th ) ) /\ ta ) ) -> et )

Proof

Step Hyp Ref Expression
1 imp5.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
2 1 imp4a
 |-  ( ph -> ( ps -> ( ( ch /\ th ) -> ( ta -> et ) ) ) )
3 2 imp44
 |-  ( ( ph /\ ( ( ps /\ ( ch /\ th ) ) /\ ta ) ) -> et )