Metamath Proof Explorer


Theorem imp5a

Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009) (Proof shortened by Wolf Lammen, 2-Aug-2022)

Ref Expression
Hypothesis imp5.1
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
Assertion imp5a
|- ( ph -> ( ps -> ( ch -> ( ( th /\ ta ) -> et ) ) ) )

Proof

Step Hyp Ref Expression
1 imp5.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )
2 1 imp5d
 |-  ( ( ( ph /\ ps ) /\ ch ) -> ( ( th /\ ta ) -> et ) )
3 2 exp31
 |-  ( ph -> ( ps -> ( ch -> ( ( th /\ ta ) -> et ) ) ) )