Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imp5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) | |
| Assertion | imp5g | |- ( ( ph /\ ps ) -> ( ( ( ch /\ th ) /\ ta ) -> et ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imp5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) | |
| 2 | 1 | imp4b | |- ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ( ta -> et ) ) ) | 
| 3 | 2 | impd | |- ( ( ph /\ ps ) -> ( ( ( ch /\ th ) /\ ta ) -> et ) ) |