Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007) (Proof shortened by Wolf Lammen, 27-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | impbid2.1 | |- ( ps -> ch ) |
|
| impbid2.2 | |- ( ph -> ( ch -> ps ) ) |
||
| Assertion | impbid2 | |- ( ph -> ( ps <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid2.1 | |- ( ps -> ch ) |
|
| 2 | impbid2.2 | |- ( ph -> ( ch -> ps ) ) |
|
| 3 | 2 1 | impbid1 | |- ( ph -> ( ch <-> ps ) ) |
| 4 | 3 | bicomd | |- ( ph -> ( ps <-> ch ) ) |