Metamath Proof Explorer


Theorem impbid21d

Description: Deduce an equivalence from two implications. (Contributed by Wolf Lammen, 12-May-2013)

Ref Expression
Hypotheses impbid21d.1
|- ( ps -> ( ch -> th ) )
impbid21d.2
|- ( ph -> ( th -> ch ) )
Assertion impbid21d
|- ( ph -> ( ps -> ( ch <-> th ) ) )

Proof

Step Hyp Ref Expression
1 impbid21d.1
 |-  ( ps -> ( ch -> th ) )
2 impbid21d.2
 |-  ( ph -> ( th -> ch ) )
3 impbi
 |-  ( ( ch -> th ) -> ( ( th -> ch ) -> ( ch <-> th ) ) )
4 1 2 3 syl2imc
 |-  ( ph -> ( ps -> ( ch <-> th ) ) )