Description: Deduce an equivalence from two implications. (Contributed by Wolf Lammen, 12-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | impbid21d.1 | |- ( ps -> ( ch -> th ) ) |
|
impbid21d.2 | |- ( ph -> ( th -> ch ) ) |
||
Assertion | impbid21d | |- ( ph -> ( ps -> ( ch <-> th ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid21d.1 | |- ( ps -> ( ch -> th ) ) |
|
2 | impbid21d.2 | |- ( ph -> ( th -> ch ) ) |
|
3 | impbi | |- ( ( ch -> th ) -> ( ( th -> ch ) -> ( ch <-> th ) ) ) |
|
4 | 1 2 3 | syl2imc | |- ( ph -> ( ps -> ( ch <-> th ) ) ) |