Description: Deduce an equivalence from two implications. Variant of impbid . (Contributed by NM, 17-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | impbida.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| impbida.2 | |- ( ( ph /\ ch ) -> ps ) |
||
| Assertion | impbida | |- ( ph -> ( ps <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| 2 | impbida.2 | |- ( ( ph /\ ch ) -> ps ) |
|
| 3 | 1 | ex | |- ( ph -> ( ps -> ch ) ) |
| 4 | 2 | ex | |- ( ph -> ( ch -> ps ) ) |
| 5 | 3 4 | impbid | |- ( ph -> ( ps <-> ch ) ) |