Metamath Proof Explorer


Theorem impcon4bid

Description: A variation on impbid with contraposition. (Contributed by Jeff Hankins, 3-Jul-2009)

Ref Expression
Hypotheses impcon4bid.1
|- ( ph -> ( ps -> ch ) )
impcon4bid.2
|- ( ph -> ( -. ps -> -. ch ) )
Assertion impcon4bid
|- ( ph -> ( ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 impcon4bid.1
 |-  ( ph -> ( ps -> ch ) )
2 impcon4bid.2
 |-  ( ph -> ( -. ps -> -. ch ) )
3 2 con4d
 |-  ( ph -> ( ch -> ps ) )
4 1 3 impbid
 |-  ( ph -> ( ps <-> ch ) )