Metamath Proof Explorer


Theorem impel

Description: An inference for implication elimination. (Contributed by Giovanni Mascellani, 23-May-2019) (Proof shortened by Wolf Lammen, 2-Sep-2020)

Ref Expression
Hypotheses impel.1
|- ( ph -> ( ps -> ch ) )
impel.2
|- ( th -> ps )
Assertion impel
|- ( ( ph /\ th ) -> ch )

Proof

Step Hyp Ref Expression
1 impel.1
 |-  ( ph -> ( ps -> ch ) )
2 impel.2
 |-  ( th -> ps )
3 2 1 syl5
 |-  ( ph -> ( th -> ch ) )
4 3 imp
 |-  ( ( ph /\ th ) -> ch )