Metamath Proof Explorer


Theorem impexp

Description: Import-export theorem. Part of Theorem *4.87 of WhiteheadRussell p. 122. (Contributed by NM, 10-Jan-1993) (Proof shortened by Wolf Lammen, 24-Mar-2013)

Ref Expression
Assertion impexp
|- ( ( ( ph /\ ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) )

Proof

Step Hyp Ref Expression
1 pm3.3
 |-  ( ( ( ph /\ ps ) -> ch ) -> ( ph -> ( ps -> ch ) ) )
2 pm3.31
 |-  ( ( ph -> ( ps -> ch ) ) -> ( ( ph /\ ps ) -> ch ) )
3 1 2 impbii
 |-  ( ( ( ph /\ ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) )