Description: An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | impor | |- ( ( ph -> ( ps \/ ch ) ) <-> ( ( -. ph \/ ps ) \/ ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imor | |- ( ( ph -> ( ps \/ ch ) ) <-> ( -. ph \/ ( ps \/ ch ) ) ) | |
| 2 | orass | |- ( ( ( -. ph \/ ps ) \/ ch ) <-> ( -. ph \/ ( ps \/ ch ) ) ) | |
| 3 | 1 2 | bitr4i | |- ( ( ph -> ( ps \/ ch ) ) <-> ( ( -. ph \/ ps ) \/ ch ) ) |