Metamath Proof Explorer


Theorem impt

Description: Importation theorem pm3.1 (closed form of imp ) expressed with primitive connectives. (Contributed by NM, 25-Apr-1994) (Proof shortened by Wolf Lammen, 20-Jul-2013)

Ref Expression
Assertion impt
|- ( ( ph -> ( ps -> ch ) ) -> ( -. ( ph -> -. ps ) -> ch ) )

Proof

Step Hyp Ref Expression
1 simprim
 |-  ( -. ( ph -> -. ps ) -> ps )
2 simplim
 |-  ( -. ( ph -> -. ps ) -> ph )
3 2 imim1i
 |-  ( ( ph -> ( ps -> ch ) ) -> ( -. ( ph -> -. ps ) -> ( ps -> ch ) ) )
4 1 3 mpdi
 |-  ( ( ph -> ( ps -> ch ) ) -> ( -. ( ph -> -. ps ) -> ch ) )