Step |
Hyp |
Ref |
Expression |
1 |
|
imval |
|- ( A e. CC -> ( Im ` A ) = ( Re ` ( A / _i ) ) ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
|
ine0 |
|- _i =/= 0 |
4 |
|
divrec2 |
|- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) |
5 |
2 3 4
|
mp3an23 |
|- ( A e. CC -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) |
6 |
|
irec |
|- ( 1 / _i ) = -u _i |
7 |
6
|
oveq1i |
|- ( ( 1 / _i ) x. A ) = ( -u _i x. A ) |
8 |
5 7
|
eqtrdi |
|- ( A e. CC -> ( A / _i ) = ( -u _i x. A ) ) |
9 |
8
|
fveq2d |
|- ( A e. CC -> ( Re ` ( A / _i ) ) = ( Re ` ( -u _i x. A ) ) ) |
10 |
1 9
|
eqtrd |
|- ( A e. CC -> ( Im ` A ) = ( Re ` ( -u _i x. A ) ) ) |