Step |
Hyp |
Ref |
Expression |
1 |
|
imsdval.1 |
|- X = ( BaseSet ` U ) |
2 |
|
imsdval.3 |
|- M = ( -v ` U ) |
3 |
|
imsdval.6 |
|- N = ( normCV ` U ) |
4 |
|
imsdval.8 |
|- D = ( IndMet ` U ) |
5 |
2 3 4
|
imsval |
|- ( U e. NrmCVec -> D = ( N o. M ) ) |
6 |
5
|
3ad2ant1 |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> D = ( N o. M ) ) |
7 |
6
|
fveq1d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( D ` <. A , B >. ) = ( ( N o. M ) ` <. A , B >. ) ) |
8 |
1 2
|
nvmf |
|- ( U e. NrmCVec -> M : ( X X. X ) --> X ) |
9 |
|
opelxpi |
|- ( ( A e. X /\ B e. X ) -> <. A , B >. e. ( X X. X ) ) |
10 |
|
fvco3 |
|- ( ( M : ( X X. X ) --> X /\ <. A , B >. e. ( X X. X ) ) -> ( ( N o. M ) ` <. A , B >. ) = ( N ` ( M ` <. A , B >. ) ) ) |
11 |
8 9 10
|
syl2an |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( ( N o. M ) ` <. A , B >. ) = ( N ` ( M ` <. A , B >. ) ) ) |
12 |
11
|
3impb |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N o. M ) ` <. A , B >. ) = ( N ` ( M ` <. A , B >. ) ) ) |
13 |
7 12
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( D ` <. A , B >. ) = ( N ` ( M ` <. A , B >. ) ) ) |
14 |
|
df-ov |
|- ( A D B ) = ( D ` <. A , B >. ) |
15 |
|
df-ov |
|- ( A M B ) = ( M ` <. A , B >. ) |
16 |
15
|
fveq2i |
|- ( N ` ( A M B ) ) = ( N ` ( M ` <. A , B >. ) ) |
17 |
13 14 16
|
3eqtr4g |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A M B ) ) ) |