Step |
Hyp |
Ref |
Expression |
1 |
|
imsdval2.1 |
|- X = ( BaseSet ` U ) |
2 |
|
imsdval2.2 |
|- G = ( +v ` U ) |
3 |
|
imsdval2.4 |
|- S = ( .sOLD ` U ) |
4 |
|
imsdval2.6 |
|- N = ( normCV ` U ) |
5 |
|
imsdval2.8 |
|- D = ( IndMet ` U ) |
6 |
|
eqid |
|- ( -v ` U ) = ( -v ` U ) |
7 |
1 6 4 5
|
imsdval |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A ( -v ` U ) B ) ) ) |
8 |
1 2 3 6
|
nvmval |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A ( -v ` U ) B ) = ( A G ( -u 1 S B ) ) ) |
9 |
8
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A ( -v ` U ) B ) ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |
10 |
7 9
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |