Description: Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | recld.1 | |- ( ph -> A e. CC ) |
|
readdd.2 | |- ( ph -> B e. CC ) |
||
Assertion | imsubd | |- ( ph -> ( Im ` ( A - B ) ) = ( ( Im ` A ) - ( Im ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | |- ( ph -> A e. CC ) |
|
2 | readdd.2 | |- ( ph -> B e. CC ) |
|
3 | imsub | |- ( ( A e. CC /\ B e. CC ) -> ( Im ` ( A - B ) ) = ( ( Im ` A ) - ( Im ` B ) ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( Im ` ( A - B ) ) = ( ( Im ` A ) - ( Im ` B ) ) ) |